8.已知函數(shù)f(x)=ex-2+a有零點(diǎn),則實(shí)數(shù)a的取值范圍為a<2.

分析 利用函數(shù)的單調(diào)性求解函數(shù)函數(shù)f(x)=ex-2的最值,然后推出a的范圍即可.

解答 解:函數(shù)g(x)=ex-2函數(shù)是增函數(shù),g(x)>-2,
函數(shù)f(x)=ex-2+a有零點(diǎn),可得a=2-ex,可得a<2.
故答案為:a<2.

點(diǎn)評 本題考查函數(shù)的零點(diǎn),函數(shù)的最值的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義區(qū)間[x1,x2]的長度為x2-x1(x2>x1)單調(diào)遞增),函數(shù)$f(x)=\frac{{({a^2}+a)x-1}}{{{a^2}x}}$(a∈R,a≠0)的定義域與值域都是[m,n](n>m),則區(qū)間[m,n]取最大長度時(shí)實(shí)數(shù)a的值(  )
A.$\frac{{2\sqrt{3}}}{3}$B.-3C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在底面是菱形的四棱錐P-ABCD中,PA⊥底面ABCD,點(diǎn)E為棱PB的中點(diǎn),點(diǎn)F在棱AD上,平面CEF與PA交于點(diǎn)K,且PA=AB=3,AF=2,則$\frac{AK}{PK}$等于(  )
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{4}{7}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某公司要招聘甲、乙兩類員工共150人,該公司員工的工資由基礎(chǔ)工資組成.其中甲、乙兩類員工每人每月的基礎(chǔ)工資分別為2千元和3千元,甲類員工每月的人均績效工資與公司月利潤成正比,比例系數(shù)為a(a>0),乙類員工每月的績效工資與公司月利潤的平方成正比,比例系數(shù)為b(b>0).
(Ⅰ)若要求甲類員工的人數(shù)不超過乙類員工人數(shù)的2倍,問甲、乙兩類員工各招聘多少人時(shí),公司每月所付基礎(chǔ)工資總額最少?
(Ⅱ)若該公司每月的利潤為x(x>0)千元,記甲、乙兩類員工該月人均工資分別為w千元和w千元,試比較w和w的大。ㄔ鹿べY=月基礎(chǔ)工資+月績效工資)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,∠A的角平分線交BC于點(diǎn)D,且AD=1,邊BC上的高AH=$\frac{1}{2}$,△ABD的面積是△ACD的面積的2倍,則BC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)ϕ(x)是定義在[m,n]上的函數(shù),若存在r∈(m,n),使得ϕ(x)在[m,r]上單調(diào)遞增,在[r,n]上單調(diào)遞減,則稱ϕ(x)為[m,n]上的F函數(shù).
(1)已知$ϕ(x)=\frac{x+a}{e^x}$為[1,2]上的F函數(shù),求a的取值范圍;
(2)設(shè)$ϕ(x)=px-(\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\frac{{p{x^5}}}{5})$,其中p>0,判斷ϕ(x)是否為[0,p]上的F函數(shù)?
(3)已知ϕ(x)=(x2-x)(x2-x+t)為[m,n]上的F函數(shù),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,輸出的S=( 。
A.4B.$-\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列中{an},a1=2,公差為d,則“d=4”是“a1,a2,a5成等比數(shù)列”的( 。
A.充要條件B.充分非必要條件
C.必要非充分條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線l:kx+y+4=0(k∈R)是圓C:x2+y2+4x-4y+6=0的一條對稱軸,過點(diǎn)A(0,k)作斜率為1的直線m,則直線m被圓C所截得的弦長為(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案