14.已知f(x)=|x-1|+|x+a|,g(a)=|a+3|.
(1)當a=3時,解關于x的不等式f(x)>g(a);
(2)函數(shù)h(x)=f(x)-g(a)存在零點,求實數(shù)a的取值范圍.

分析 (1)當a=3時,不等式|x-1|+|x+3|>6等價變形,可得結論;
(2)利用|x-1|+|x+a|≥|a+1|,即可求實數(shù)a的取值范圍.

解答 解:(1)當a=3時,不等式f(x)>g(a),即|x-1|+|x+3|>6可化為
$\left\{\begin{array}{l}{x≤-3}\\{1-x-x-3>6}\end{array}\right.$或$\left\{\begin{array}{l}{-3<x<1}\\{1-x+x+3>6}\end{array}\right.$或$\left\{\begin{array}{l}{x>1}\\{x-1+x+3>6}\end{array}\right.$,…(3分)
解得x<-4或x>2,
∴不等式f(x)>g(a)的解集為{x|x<-4或x>2}.…(5分)
(2)若函數(shù)h(x)=f(x)-g(a)存在零點,則
∵|x-1|+|x+a|≥|a+1|,
∴|3+a|≥|a+1|,解得a≥-2.

點評 本題考查絕對值不等式,考查學生的計算能力,考查學生分析解決問題的能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.等差數(shù)列{an}中,若已知a2=14,a5=5.
(Ⅰ)求數(shù)列{an}的通項公式an;     
(Ⅱ)求前10項和S10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過點O(0,0)作直線與圓(x-4$\sqrt{5}$)2+(y-8)2=169相交,則在弦長為整數(shù)的所有直線中,等可能的任取一條直線,則弦長長度不超過14的概率為( 。
A.$\frac{9}{10}$B.$\frac{15}{32}$C.$\frac{9}{32}$D.$\frac{7}{32}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線x+y-a=0與圓x2+y2=2交于A、B兩點,O點坐標原點,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$滿足條件$|{2\overrightarrow{OA}-3\overrightarrow{OB}}|=|{2\overrightarrow{OA}+3\overrightarrow{OB}}|$,則實數(shù)a的值為( 。
A.$\sqrt{2}$B.$-\sqrt{2}$C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x-aex,a∈R.
(Ⅰ)當a=1時,求曲線y=f(x)在點(0,f(0))處的切線的方程;
(Ⅱ)若曲線y=f(x)與x軸有且只有一個交點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+1≤0}\\{x+y-9≤0}\\{x≥1}\end{array}}\right.$,則z=5x+3y的最大值為35.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.有4個不同的球,4個不同的盒子,把球全部放入盒內:
(1)恰有1個盒內有2個球,共有幾種放法?
(2)恰有2個盒不放球,共有幾種放法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設P為△ABC所在平面上一點,且滿足$3\overrightarrow{PA}+4\overrightarrow{PC}=m\overrightarrow{AB}$(m>0).若△ABP的面積為8,則△ABC的面積為14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知關于x,y的二元一次方程組的增廣矩陣為$(\begin{array}{l}{2}&{1}&{5}\\{1}&{-2}&{0}\end{array})$,則3x-y=5.

查看答案和解析>>

同步練習冊答案