20.已知A={ x|x2-2x-3≤0},若實(shí)數(shù)a∈A,則a的取值范圍是[-1,3].

分析 根據(jù)元素與集合的關(guān)系進(jìn)行判斷.

解答 解:集合A={ x|x2-2x-3≤0}={x|-1≤x≤3}
∵實(shí)數(shù)a∈A,
則:-1≤a≤3.
所以a的取值范圍是[-1,3].
故答案為[-1,3].

點(diǎn)評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出以下四個命題,
①如果平面α,β,γ滿足α⊥γ,β⊥γ,α∩β=l,則l⊥γ
②若直線l上有無數(shù)個點(diǎn)不在平面α內(nèi),則l∥α
③已知a,b是異面直線,α,β為兩個平面,若a?α,a∥β,b?β,b∥α,則α∥β
④一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線
其中正確命題的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某商場一年購進(jìn)某種貨物900噸,每次都購進(jìn)x噸,運(yùn)費(fèi)為每次9萬元,一年的總存儲費(fèi)用為9x萬元.
(1)要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最小,則每次購買多少噸?
(2)要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和不超過585萬元,則每次購買量在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=|loga|x||(a>0,a≠1),若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則x1+x2+x3+x4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“p∨q是真命題”是“¬p是假命題”的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)y=2sin(ωx+$\frac{π}{3}$)(ω∈N*)經(jīng)過點(diǎn)(2π,$\sqrt{3}$),則ω的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|-|2x+3|.
(I)解不等式f(x)>2;
(II)若關(guān)于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集為R,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(Ⅰ)已知某橢圓的左右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過點(diǎn)P($\frac{1}{2}$,$\frac{{\sqrt{14}}}{4}$),求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 已知某橢圓過點(diǎn)($\sqrt{2}$,-1),(-1,$\frac{{\sqrt{6}}}{2}$),求該橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何的三視圖如圖所示,該幾何體各個面中,最大面積為(  )
A.$2\sqrt{34}$B.10C.$8\sqrt{2}$D.$6\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案