12.已知函數(shù)$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$.
(Ⅰ)判斷f(x)的奇偶性,并加以證明;
(Ⅱ)求方程$f(x)=\frac{1}{2}$的實(shí)數(shù)解.

分析 (Ⅰ)利用奇函數(shù)的定義,即可得出結(jié)論;
(Ⅱ)由$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}=\frac{1}{2}$,得2x=3,x=log23,即可得出結(jié)論.

解答 解:(Ⅰ)因?yàn)楹瘮?shù)f(x)的定義域?yàn)镽,且$f(-x)=\frac{{{2^{-x}}-1}}{{{2^{-x}}+1}}=\frac{{1-{2^x}}}{{1+{2^x}}}=-f(x)$,
所以f(x)是定義在R上的奇函數(shù);          …(4分)
(Ⅱ)∵$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}=\frac{1}{2}$,∴2x=3,x=log23.
所以方程的實(shí)數(shù)解為x=log23.…(8分)

點(diǎn)評(píng) 本題考查函數(shù)的性質(zhì),考查方程思想,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓于A.B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-$\frac{\sqrt{5}}{5}$),則E的方程為(  )
A.$\frac{{x}^{2}}{10}$+y2=1B.$\frac{{x}^{2}}{19}$+$\frac{{y}^{2}}{10}$=1C.$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知f(x)=$\left\{\begin{array}{l}{x-3(x≥9)}\\{f(x+6)(x<9)}\end{array}\right.$,則f(5)的值為(  )
A.2B.8C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知方程x2+y2+2x-2y+1=0.
(1)求x2+y2的最大值.
(2)求$\frac{y-2}{x-1}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則( 。
A.ω=2,$φ=\frac{π}{6}$B.$ω=\frac{1}{2}$,$φ=\frac{π}{6}$C.ω=2,$φ=\frac{π}{3}$D.$ω=\frac{1}{2}$,$φ=\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)數(shù)列{an}的各項(xiàng)均為不等的正整數(shù),其前n項(xiàng)和為Sn,我們成滿足條件“對(duì)任意的m,n∈N*,均有(n-m)Sm+n=(m+n)(Sn-Sm)”的數(shù)列{an}為“好”數(shù)列.
(1)試判斷數(shù)列{an},{bn}是否為“好”數(shù)列,其中${a_n}=2n-1,{b_n}={2^{n-1}},n∈{N^*}$,并給出證明.
(2)已知數(shù)列{cn}為“好”數(shù)列.
①c2016=2017,求數(shù)列的通項(xiàng)公式;
②若c1=p,且對(duì)任意的給定正整數(shù)p,s(s>1),有c1,cs,ct成等比數(shù)列,求證:t≥s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線y2=4x的焦點(diǎn)為橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)F,點(diǎn)B為此拋物線與橢圓C在第一象限的交點(diǎn),且$|{BF}|=\frac{5}{3}$.
(I)求橢圓C的方程;
(Ⅱ)過點(diǎn)F作兩條互相垂直的直線l1,l2,直線l1與橢圓C交于P,Q兩點(diǎn),直線l2與直線x=4交于點(diǎn)T,求$\frac{{|{TF}|}}{{|{PQ}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某一無(wú)上蓋幾何體的三視圖,則該幾何體的表面積等于( 。
A.39πB.48πC.57πD.63π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.把邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折起,使得平面ABD⊥平面CBD,則異面直線AD,BC所成的角為( 。
A.120°B.30°C.90°D.60°

查看答案和解析>>

同步練習(xí)冊(cè)答案