已知函數(shù)f(x)是定義在(-∞,+∞)上的偶函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=
1
x
-x4,則當(dāng)x∈(0,+∞)時(shí),f(x)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)的奇偶性解函數(shù)的解析式,步驟是固定的.
解答: 解:當(dāng)x∈(0,+∞)時(shí),-x∈(-∞,0),
又∵函數(shù)f(x)是定義在(-∞,+∞)上的偶函數(shù),
∴f(x)=f(-x)=
1
-x
-
1
(-x)4
=-
1
x
-x4,
故答案為:f(x)=-
1
x
-x4
點(diǎn)評(píng):本題考查了借助函數(shù)的奇偶性求解函數(shù)的解析式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,以F2為圓心,OF2(O為橢圓中心)為半徑作圓F2,若它與橢圓的一個(gè)交點(diǎn)為M,且MF1恰好為圓F2的一條切線(xiàn),則橢圓的離心率為(  )
A、
3
-1
B、2-
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2ax-
b
x
+lnx.
(Ⅰ)當(dāng)b=a時(shí),若f(x)在(0,+∞)上是單調(diào)函數(shù),求a的取值范圍.
(Ⅱ)若f(x)在x=m,x=n(m<n)處取得極值,若方程f(x)=c在(0,2n]上有唯一解,則c的取值范圍為 {x|x<x0或s≤x<t},求t-s的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組函數(shù)是同一函數(shù)的是 ( 。
f(x)=
-2x3
g(x)=x
-2x
;  
②f(x)=x2-2x-1與g(t)=t2-2t-1;
③f(x)=x0g(x)=
1
x0
;          
④f(x)=|x|與g(x)=(
x
)2
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
ax3-bx2+(2-b)x+1(a,b是實(shí)數(shù),a≠0)在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.
(1)求證:0<a<2b<3a:
(2)若函數(shù)g(x)=f′(x)-2+a-2b.設(shè)g(x)的零點(diǎn)為α,β,求|α-β|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),它在[0,+∞)上為增函數(shù),且f(
1
3
)=0,則不等式f(log8x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果執(zhí)行如圖的程序框圖,若輸入n=6,m=4,那么輸出的p等于( 。
A、720B、360
C、240D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,函數(shù)y=f(x)的圖象為折線(xiàn)ABC,設(shè)f1(x)=f(x),fn+1(x)=f[fn(x)],n∈n*,則函數(shù)y=f4(x)的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α∈{-1,1,
1
2
,3}
,則使函數(shù)y=xα的定義域?yàn)镽且為奇函數(shù)的所有α的值為( 。
A、-1,1,3
B、
1
2
,1
C、-1,3
D、1,3

查看答案和解析>>

同步練習(xí)冊(cè)答案