分析 (1)利用三角函數(shù)的恒等變換化簡函數(shù)的解析式為f(x)=2sin(2x-$\frac{π}{3}$)+1+$\sqrt{3}$,由此求得函數(shù)f(x)的最小正周期.
(2)在△ABC中,由條件利用余弦定理求得cosA的值,可得A的值,可得B的范圍,再利用正弦函數(shù)的定義域和值域求得f(B)的范圍.
解答 解:(1)函數(shù)f(x)=(sinx+cos)2+2$\sqrt{3}$sin2x=1+sin2x+2$\sqrt{3}$•$\frac{1-cos2x}{2}$
=sin2x-$\sqrt{3}$cos2x+1+$\sqrt{3}$=2sin(2x-$\frac{π}{3}$)+1+$\sqrt{3}$的最小正周期為$\frac{2π}{2}$=π.
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
遞增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
(2)在△ABC中,2acosC+c=2b,∴2a•$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$+c=2b,即b2+c2-a2=bc,
∴cosA=$\frac{^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{1}{2}$,∴A=$\frac{π}{3}$.
∴0<B<$\frac{2π}{3}$,-$\frac{π}{3}$<2B-$\frac{π}{3}$<π,∴sin(2B-$\frac{π}{3}$)∈(-$\frac{\sqrt{3}}{2}$,1],
可得f(B)∈(1,$3+\sqrt{3}$].
點評 本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,余弦定理、正弦函數(shù)的定義域和值域,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{2}+{y^2}=1$ | B. | (x-1)2+y2=1 | C. | y=x2 | D. | x2-y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)<0,f(b)<0 | B. | f(a)>0,f(b)>0 | C. | f(a)>0,f(b)<0 | D. | f(a)<0,f(b)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
ko | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=16x | B. | y2=8x | C. | y2=4x | D. | y2=2x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com