A. | $[0,8+6\sqrt{2}]$ | B. | $[-2\sqrt{2},8+6\sqrt{2}]$ | C. | $[-8-6\sqrt{2},2\sqrt{2}]$ | D. | $[-8-6\sqrt{2},8+6\sqrt{2}]$ |
分析 由題意求出以A1為起點(diǎn),以其它頂點(diǎn)為向量的模,再由正弦函數(shù)的單調(diào)性及值域可得當(dāng)P與A8重合時(shí),$\overrightarrow{{A_1}{A_3}}•\overrightarrow{{A_1}P}$取最小值,求出最小值,結(jié)合選項(xiàng)得答案.
解答 解:由題意,正八邊形A1A2A3A4A5A6A7A8的每一個(gè)內(nèi)角為135°,
且$|\overrightarrow{{A}_{1}{A}_{2}}|=|\overrightarrow{{A}_{1}{A}_{8}}|=2$,$|\overrightarrow{{A}_{1}{A}_{3}}|=|\overrightarrow{{A}_{1}{A}_{7}}|=2\sqrt{2+\sqrt{2}}$,$|\overrightarrow{{A}_{1}{A}_{4}}|=|\overrightarrow{{A}_{1}{A}_{6}}|=2+\sqrt{2}$,$|\overrightarrow{{A}_{1}{A}_{5}}|=\sqrt{4+2\sqrt{2}}$.
再由正弦函數(shù)的單調(diào)性及值域可得,
當(dāng)P與A8重合時(shí),$\overrightarrow{{A_1}{A_3}}•\overrightarrow{{A_1}P}$最小為$2×2\sqrt{2+\sqrt{2}}×cos112.5°$=$2×2\sqrt{2+\sqrt{2}}×(-\frac{\sqrt{2-\sqrt{2}}}{2})$=$-2\sqrt{2}$.
結(jié)合選項(xiàng)可得$\overrightarrow{{A_1}{A_3}}•\overrightarrow{{A_1}P}$的取值范圍為$[-2\sqrt{2},8+6\sqrt{2}]$.
故選:B.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查數(shù)形結(jié)合的解題思想方法,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({1,\sqrt{2}}]$ | B. | $({0,\sqrt{2}}]$ | C. | $({1,\sqrt{2}})$ | D. | $({0,\sqrt{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30 | B. | 70 | C. | 90 | D. | -150 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 12 | C. | 24 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{4}{9}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出xi | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷(xiāo)售額yi | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com