分析 (1)設(shè)AC∩BD=O,推導(dǎo)出OE∥PA,由此能證明平面EBD⊥平面ABCD.
(2)取線段BC的中點F,連接OF,EF,推導(dǎo)出∠EFO是二面角E-BC-A的平面角,由此能求出二面角E-BC-A的大小.
解答 證明:(1)設(shè)AC∩BD=O,
∵底面ABCD是正方形,∴O是AC中點,
∵E,O分別為線段PC,AC的中點
∴OE∥PA,
∵PA⊥平面ABCD∴OE⊥平面ABCD
∵OE?平面BDEPABCDE
∴平面EBD⊥平面ABCD…(6分)
解:(2)取線段BC的中點F,連接OF,EF
∵ABCD是正方形,F(xiàn)是線段BC的中點O
∴OF⊥平面BCF,
∵OE⊥平面ABCD,
∴OE⊥BC,∴BC⊥平面OEF
∴EF⊥BC,∴∠EFO是二面角E-BC-A的平面角,…(9分)
在直角三角形OEF中,OE=OF,
∴∠EFO=45°,即二面角E-BC-A的大小為45°.…(12分)
點評 本題考查面面垂直的證明,考查二面角的大小的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com