1.袋中有2個(gè)黃球3個(gè)白球,甲乙兩人分別從中任取一球,取得黃球得1分,取得白球得2分,兩人總分和為X,則X=3的概率是$\frac{3}{5}$.

分析 利用相互獨(dú)立事件概率乘法公式、互斥事件概率加法公式求解.

解答 解:當(dāng)X=3時(shí),甲取到黃球,乙取到白球或甲取到白球,乙取到黃球,
故P(X=3)=$\frac{2}{5}×\frac{3}{4}+\frac{3}{5}×\frac{2}{4}$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查概率的求法,考查相互獨(dú)立事件概率乘法公式、互斥事件概率加法公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想、數(shù)形結(jié)合思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知e為自然對(duì)數(shù)的底,a=($\frac{2}{e}$)-0.3,b=($\frac{e}{2}$)0.4,c=log${\;}_{\frac{2}{e}}$e,則a,b,c的大小關(guān)系是( 。
A.c<b<aB.c<a<bC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PC⊥平面ABCD,點(diǎn)E在棱PA上.
(Ⅰ)求證:直線BD⊥平面PAC;
(Ⅱ)若PC∥平面BDE,求證:AE=EP;
(Ⅲ)是否存在點(diǎn)E,使得四面體A-BDE的體積等于四面體P-BDC的體積的$\frac{1}{3}$?若存在,求出$\frac{PE}{PA}$的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三個(gè)元素,則實(shí)數(shù)m的取值范圍是( 。
A.[3,6)B.[1,2)C.[2,4)D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M(x0,4)是拋物線C上一點(diǎn),以M為圓心,|MF|為半徑的圓被直線x=-1截得的弦長(zhǎng)為2$\sqrt{7}$,則|MF|等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f'(x),若2f(x)-f'(x)<2,f(0)=2018,則不等式f(x)>2017e2x+1(其中e為自然對(duì)數(shù)的底數(shù))的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,A,B,E是⊙O上的點(diǎn),過(guò)E點(diǎn)的⊙O的切線與直線AB交于點(diǎn)P,∠APE的平分線和AE,BE分別交于點(diǎn)C,D.求證:
(1)DE=CE;
(2)$\frac{CA}{CE}=\frac{PE}{PB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.17世紀(jì)日本數(shù)學(xué)家們對(duì)這個(gè)數(shù)學(xué)關(guān)于體積方法的問(wèn)題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱(chēng)為“立圓術(shù)”或“玉積率”,創(chuàng)用了求“玉積率”的獨(dú)特方法“會(huì)玉術(shù)”,其中,D為直徑,類(lèi)似地,對(duì)于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類(lèi)似的體積公式V=kD3,其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長(zhǎng),假設(shè)運(yùn)用此“會(huì)玉術(shù)”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1,k2,k3=( 。
A.$\frac{π}{4}$:$\frac{π}{6}$:1B.$\frac{π}{6}$:$\frac{π}{4}$:2C.1:3:$\frac{12}{π}$D.1:$\frac{3}{2}$:$\frac{6}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某研究性學(xué)習(xí)小組調(diào)查研究性別對(duì)喜歡吃甜食的影響,部分統(tǒng)計(jì)數(shù)據(jù)如表:
  女生 男生 合計(jì)
 喜歡吃甜食 8 4 12
 不喜歡吃甜食216 18
 合計(jì) 10 20 30
附表:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
經(jīng)計(jì)算K2=10,則下列選項(xiàng)正確的是( 。
A.有99.5%的把握認(rèn)為性別對(duì)喜歡吃甜食無(wú)影響
B.有99.5%的把握認(rèn)為性別對(duì)喜歡吃甜食有影響
C.有99.9%的把握認(rèn)為性別對(duì)喜歡吃甜食無(wú)影響
D.有99.9%的把握認(rèn)為性別對(duì)喜歡吃甜食有影響

查看答案和解析>>

同步練習(xí)冊(cè)答案