2.如圖,在平行四邊形ABCD中,$\overrightarrow{AB}+\overrightarrow{AD}$=( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{CA}$C.$\overrightarrow{BD}$D.$\overrightarrow{DB}$

分析 直接利用平面向量的加法的法則寫出結(jié)果即可.

解答 解:由平面向量加法的平行四邊形法則,可知在平行四邊形ABCD中,$\overrightarrow{AB}+\overrightarrow{AD}$=$\overrightarrow{AC}$.
故選:A.

點評 本題考查向量的平行四邊形法則的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z=$\frac{(i-1)^{2}+1}{{i}^{3}}$的實部為 (  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|x2-px-2=0},B={x|x2+qx+r=0},若A∪B={-2,1,5},A∩B={-2},求p+q+r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四個命題中真命題是( 。
A.同垂直于一直線的兩條直線互相平行
B.底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C.過空間任一點與兩條異面直線都垂直的直線有且只有一條
D.過球面上任意兩點的大圓有且只有一個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB是⊙O的直徑,PA⊥⊙O所在的平面,C是圓上一點,∠ABC=30°,PA=AB=4.
(1)求證:平面PAC⊥平面PBC;
(2)求直線PC與平面ABC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=sin(ωx-$\frac{3π}{4}$)(ω>0)的最小值正周期為π
(1)求ω;
(2)若f($\frac{α}{2}$+$\frac{3π}{8}$)=$\frac{24}{25}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=x2-4x+5在區(qū)間[-1,m]上的最大值為10,最小值為1,則實數(shù)m的取值范圍是( 。
A.[2,+∞)B.[2,4]C.[-1,5]D.[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(-2)>0的解集為( 。
A.(-∞,-2016)B.(-2018,-2016)C.(-2018,0)D.(-∞,-2018)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.△ABC的內(nèi)角A,B,C的對邊分別為$a,b,c,\frac{a-b+c}{c}=\frac{a+b-c}$,若a=2,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案