6.已知焦點(diǎn)在x軸上的橢圓C為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{^{2}}$=1,F(xiàn)1、F2分別是橢圓C的左、右焦點(diǎn),離心率e=$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)Q的坐標(biāo)為(1,0),橢圓上是否存在一點(diǎn)P,使得直線PF1,PF2都與以Q為圓心的一個(gè)圓相切?若存在,求出P點(diǎn)坐標(biāo)及圓的方程;若不存在,請(qǐng)說(shuō)明理由.

分析 (1)橢圓C為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{^{2}}$=1焦點(diǎn)在x軸上,a=2$\sqrt{2}$,橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,解得:c=2.則b2=a2-c2=4即可求得橢圓C的方程;
(2)假設(shè)存在滿足條件的點(diǎn)P,設(shè)出其坐標(biāo),根據(jù)兩點(diǎn)式寫出直線PF1,PF2的方程,根據(jù)圓的切線滿足圓心到直線的距離等于半徑,利用點(diǎn)到直線的距離公式列出有關(guān)點(diǎn)P的坐標(biāo)的方程,再利用點(diǎn)P的坐標(biāo)滿足橢圓的方程,解方程組求得點(diǎn)P的坐標(biāo).

解答 解:(1)由題可知:橢圓C為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{^{2}}$=1焦點(diǎn)在x軸上,a=2$\sqrt{2}$,
橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,解得:c=2.
∴b2=a2-c2=4.
故橢圓C的方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$;…(4分)
(2)假設(shè)橢圓上存在一點(diǎn)P(x0,y0),
使得直線PF1,PF2都與以Q為圓心的一個(gè)圓相切,則Q到直線PF1,PF2的距離相等.
∵F1(-2,0),F(xiàn)2(2,0),
∴直線PF1的方程為(x0+2)y-y0x-2y0=0,
直線PF2的方程為(x0-2)y-y0x+2y0=0.…(6分)
∴d1=$\frac{丨{y}_{0}丨}{\sqrt{({x}_{0}-2)^{2}+{y}_{0}^{2}}}$=$\frac{丨3{y}_{0}丨}{\sqrt{({x}_{0}+2)^{2}+{y}_{0}^{2}}}$=d2
化簡(jiǎn)整理得:8x02-40x0+32+8y02=0.…(9分)
∵點(diǎn)在橢圓上,
∴x02+2y02=8
由以上兩式解得:x0=2或x0=8(舍去),
∴y0=$\sqrt{2}$或y0=-$\sqrt{2}$,此時(shí)相切的圓的半徑r=1.…(11分)
∴橢圓上存在點(diǎn)P,其坐標(biāo)為(2,$\sqrt{2}$)或(2,-$\sqrt{2}$),
使得直線PF1,PF2都與以Q為圓心的圓(x-1)2+y2=1相切.…(12分)

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知底面為矩形的四棱錐D-ABCE,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,且二面角D-AE-C的正切值為-2.
(1)求證:平面ADE⊥平面CDE;
(2)求點(diǎn)D到平面ABCE的距離;
(3)求二面角A一BD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題

,則( )

A. B.

C.4 D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.學(xué)校體育隊(duì)共有5人,其中會(huì)打排球的有2人,會(huì)打乒乓球的有5人,現(xiàn)從中選2人.設(shè)ξ為選出的人中既會(huì)打排球又會(huì)打乒乓球的人數(shù),則隨機(jī)變量ξ的均值E(ξ)=( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,若sin2A+sin2B=2sin2C,則角C為( 。
A.鈍角B.直角C.銳角D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知PA垂直于以AB為直徑的ΘO所在的平面,C是ΘO上異于A,B的動(dòng)點(diǎn),PA=1,AB=2,當(dāng)三棱錐P-ABC取得最大體積時(shí),求:
(1)PC與AB所成角的大小;
(2)PA與面PCB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x),x∈R,則f(x)的最大值為(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=lnx-\frac{1}{2}x$.
(Ⅰ)求f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)x>1時(shí),$f(x)+\frac{a}{x}<0$恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:當(dāng)n∈N*且n≥2時(shí),$\frac{1}{2ln2}+\frac{1}{3ln3}+…+\frac{1}{nlnn}>\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案