【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計情況如表:
性別屬性 | 同意父母生“二孩” | 反對父母生“二孩” | 合計 |
男生 | 10 | ||
女生 | 30 | ||
合計 | 100 |
請補充完整上述列聯(lián)表;
根據(jù)以上資料你是否有把握,認為是否同意父母生“二孩”與性別有關(guān)?請說明理由.
參考公式與數(shù)據(jù):,其中
k |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學(xué)生每周平均體育運動時間超過4小時的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點.
求橢圓的標準方程;
設(shè)直線l經(jīng)過點且與橢圓C交于不同的兩點M,N試問:在x軸上是否存在點Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點Q的坐標及定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢園C: +=1(a>b>0)的左、右焦點分別為F1,F2.且橢圓C過點(,-),離心率e=;點P在橢圓C 上,延長PF1與橢圓C交于點Q,點R是PF2中點.
(I )求橢圓C的方程;
(II )若O是坐標原點,記△QF1O與△PF1R的面積之和為S,求S的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4一4:坐標系與參數(shù)方程]已知直線l過原點且傾斜角為, ,以原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C 的極坐標方程為psin =4cos.
(I)寫出直線l的極坐標方程和曲線C 的直角坐標方程;
(Ⅱ)已知直線l過原點且與直線l相互垂直,若lC=-M,lC=N,其中M,N不與原點重合,求△OMN 面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點A(-,0),B(,0),動點P在y軸上的投影是Q,且.
(1)求動點P的軌跡C的方程;
(2)過F(1,0)作互相垂直的兩條直線交軌跡C于點G,H,M,N,且E1,E2分別是GH,MN的中點.求證:直線E1E2恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實常數(shù)和,使得函數(shù)和對其公共定義域上的任意實數(shù)都滿足: 和恒成立,則稱此直線為和的“隔離直線”,已知函數(shù), ,有下列命題:
①在內(nèi)單調(diào)遞增;
②和之間存在“隔離直線”,且的最小值為-4;
③和之間存在“隔離直線”,且的取值范圍是;
④和之間存在唯一的“隔離直線”.
其中真命題的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足a1=m,an+1= (k∈N*,r∈R),其前n項和為.
(1)當(dāng)m與r滿足什么關(guān)系時,對任意的n∈N*,數(shù)列{an}都滿足an+2=an?
(2)對任意實數(shù)m,r,是否存在實數(shù)p與q,使得{a2n+1+p}與{a2n+q}是同一個等比數(shù)列.若存在,請求出p,q滿足的條件;若不存在,請說明理由;
(3)當(dāng)m=r=1時,若對任意的n∈N*,都有Sn≥λan,求實數(shù)λ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗甲、乙兩個大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績,得到莖葉圖。 學(xué)校規(guī)定:成績不得低于85分的為優(yōu)秀
(1)根據(jù)以上數(shù)據(jù)填寫下列的的列聯(lián)表
甲 | 乙 | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(2)是否有的把握認為成績優(yōu)異與教學(xué)方式有關(guān)?”(計算保留三位有效數(shù)字)
下面臨界值表僅供參考:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com