4.對任意實數(shù)a,b,c,給出下列命題:
①“a=b”是“ac=bc”的充要條件;
②“a+5是無理數(shù)”是“a是無理數(shù)”的充要條件;
③“a>b”是“a2>b2”的充分條件;
④“a<4”是“a<3”的必要條件;
其中真命題的個數(shù)是(  )
A.1個B.2個C.3個D.4個

分析 逐項判斷即可.①由ac=bc不能推出a=b;②由5是有理數(shù)易判斷;③根據(jù)不等式的性質(zhì)可得;④根據(jù)充分必要條件的定義易得.

解答 解:①由“a=b“可得ac=bc,但當(dāng)ac=bc時,不能得到a=b,故“a=b”是“ac=bc”的充分不必要條件,故①錯誤;
②因為5是有理數(shù),所以當(dāng)a+5是無理數(shù)時,a必為無理數(shù),反之也成立,故②正確;
③取a=1,b=-2,此時a2<b2,故③錯誤;
④當(dāng)a<4時,不能推出a<3;當(dāng)a<3時,有a<4成立,故“a<4”是“a<3”的必要不充分條件,故④正確.
綜上可得正確的命題有2個.
故選:B.

點評 本題考查充分必要條件的判斷,掌握充分必要條件的定義是關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸出的S=$\frac{2016}{1024}$,判斷框內(nèi)填入的條件可以是( 。
A.n<10B.n≤10C.n≤1024D.n<1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有下列命題:
①在函數(shù)y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的圖象中,相鄰兩個對稱中心的距離為π;
②命題:“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對任意的x∈R,都有sin≤1,則¬p是:存在x0∈R,使得sinx0>1;
⑤命題“若0<a<1,則loga(a+1)>loga(1+$\frac{1}{a}$)”是真命題;
⑥|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$+$\overrightarrow$|恒成立;
⑦若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$⊥$\overrightarrow$;  
其中所有真命題的序號是③④⑤⑦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若不等式($\frac{1}{2}$)x+($\frac{1}{3}$)x-m≥0在x∈(-∞,1]時恒成立,則實數(shù)m的取值范圍是(-∞,$\frac{5}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知Rt△ABC的周長為定值2,則它的面積最大值為3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知關(guān)于x的不等式(4kx-k2-12k-9)(2x-11)>0,其中k∈R;
(1)試求不等式的解集A;
(2)對于不等式的解集A,記B=A∩Z(其中Z為整數(shù)集),若集合B為有限集,求實數(shù)k的取值范圍,使得集合B中元素個數(shù)最少,并用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.我們把b除a的余數(shù)r記為r=abmodb,例如4=9bmod5,如圖所示,若輸入a=209,b=77,則循環(huán)體“r←abmodb”被執(zhí)行了4次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如果函數(shù)f(x)=-x2+bx+c,對稱軸為x=2,則f(1)、f(2)、f(4)大小關(guān)系是f(2)>f(1)>f(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知2a+3b=4,則4a+8b的最小值為8.

查看答案和解析>>

同步練習(xí)冊答案