19.我國(guó)南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)△ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,面積為S,則“三斜求積”公式為$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,則用“三斜求積”公式求得△ABC的面積為( 。
A.$\sqrt{3}$B.2C.3D.$\sqrt{6}$

分析 根據(jù)正弦定理:由a2sinC=4sinA得ac=4,則由(a+c)2=12+b2得a2+c2-b2=4,利用公式可得結(jié)論.

解答 解:根據(jù)正弦定理:由a2sinC=4sinA得ac=4,則由(a+c)2=12+b2得a2+c2-b2=4,則${S_{△ABC}}=\sqrt{\frac{1}{4}({16-4})}=\sqrt{3}$.
故選A.

點(diǎn)評(píng) 本題主要考查類比推理的應(yīng)用,要求正確理解類比的關(guān)系,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,則f(x)的解析式是(  )
A.$f(x)=sin(x+\frac{π}{6})$B.$f(x)=sin(x+\frac{π}{3})$C.$f(x)=sin(2x+\frac{π}{6})$D.$f(x)=sin(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.E、F分別是邊長(zhǎng)為1的正方形ABCD兩對(duì)邊AD,BC的中點(diǎn),沿EF把CDEF折起,折成一個(gè)二面角D-EF-B是45°的幾何圖形,下面命題中:
①∠AED=45°;
②異面直線EF與AC所成角的正切值是$\frac{{\sqrt{2-\sqrt{2}}}}{2}$;
③三棱錐C-ABF的體積等于$\frac{{\sqrt{2}}}{48}$.
正確命題的序號(hào)有:①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.己知${a^{\frac{2}{3}}}=\frac{4}{9}(a>0)$,則${log_a}\frac{3}{2}$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)中,與函數(shù)$f(x)=\frac{1}{{\root{3}{x}}}$的定義域相同的函數(shù)是( 。
A.y(x)=x•exB.$y=\frac{sinx}{x}$C.$y=\frac{x}{sinx}$D.$y=\frac{lnx}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖動(dòng)直線l:y=b與拋物線y2=4x交于點(diǎn)A,與橢圓$\frac{x^2}{2}+{y^2}=1$交于拋物線右側(cè)的點(diǎn)B,F(xiàn)為拋物線的焦點(diǎn),則AF+BF+AB的最大值為( 。
A.3B.$3\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=axn(2-x)2在區(qū)間[0,2]上的圖象如圖所示,則n的值可能是( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{π}{3}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,若(2$\overrightarrow{a}$+λ$\overrightarrow$)⊥$\overrightarrow$,則實(shí)數(shù)λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.知函數(shù)f(x)=ax2-2x+lnx(a≠0,a∈R).
(1)判斷函數(shù) f (x)的單調(diào)性;
(2)若函數(shù) f (x)有兩個(gè)極值點(diǎn)x1,x2,求證:f(x1)+f(x2)<-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案