A. | (-3,0) | B. | (3,0) | C. | (-1,3) | D. | (-2,0) |
分析 直線l:x=my+b,代入拋物線方程可化為y2-2my-2b=0,y1y2=-2b,結(jié)合${k_1}{k_2}=\frac{2}{3}$,即可得出結(jié)論.
解答 解:設(shè)A(x1,y1),B(x2,y2),則$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=$\frac{2}{3}$,
∴y1y2=6
直線l:x=my+b,代入拋物線方程可化為y2-2my-2b=0,
∴y1y2=-2b,
∴-2b=6,∴b=-3,
∴l(xiāng)一定過點(-3,0),
故選A.
點評 本題考查拋物線方程,考查直線與拋物線的位置關(guān)系,比較基礎(chǔ)..
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | 3 | C. | $\frac{8}{3}$或8 | D. | 3或8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com