13.圓x2+y2-2x+2y+1=0的圓心到直線x+y+1=0的距離是( 。
A.$\frac{1}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{3}{2}$

分析 圓x2+y2-2x+2y+1=0即(x-1)2+(y+1)2=3的圓心(1,-1)再利用點到直線的距離公式即可得出到直線x+y+1=0的距離.

解答 解:圓x2+y2-2x+2y+1=0即(x-1)2+(y+1)2=3的圓心(1,-1)
圓心(1,-1)到直線x+y+1=0的距離=$\frac{|1-1+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
故選C.

點評 本題考查圓的方程,考查點到直線的距離公式,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E是棱AB上的動點.
(Ⅰ)求證:DA1⊥ED1;
(Ⅱ)若E為AB中點時,求二面角D1-EC-D的余弦值;
(Ⅲ)寫出點E到直線D1C距離的最大值及此時點E的位置(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C:x2+y2+Dx+Ey+3=0關(guān)于直線x+y-1=0對稱,圓心在第二象限,半徑為$\sqrt{2}$.
(1)求圓C的方程;
(2)是否存在斜率為2的直線l,l截圓C所得的弦為AB,且以AB為直徑的圓過原點,若存在,則求出l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若方程x2-2x+p=0的兩個根為α、β,且|α-β|=3,則實數(shù)p=$-\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=1$與橢圓$\frac{x^2}{a^2}+\frac{y^2}{16}=1$有共同的焦點,且a>0,則a的值為(  )
A.5B.$\sqrt{7}$C.$\sqrt{15}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某高!敖y(tǒng)計初步”課程的教師為了判斷主修統(tǒng)計專業(yè)是否與性別有關(guān),隨機調(diào)查了該選修課的一些學(xué)生情況.23名男生中,有10人是統(tǒng)計專業(yè);27名女生中,有20人是統(tǒng)計專業(yè).
(1)根據(jù)統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表.
非統(tǒng)計專業(yè)統(tǒng)計專業(yè)總計
總計
(2)如果判斷主修統(tǒng)計專業(yè)與性別有關(guān),那么這種判斷出錯的概率最大不超過多少?
附表:
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.y2=4x的準(zhǔn)線方程為x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=-x3+3x2+9x+a.
(1)當(dāng)a=-10時,求f(x)在x=2處的切線方程;
(2)若f(x)在區(qū)間[-2,2]上的最大值為18,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=$\frac{x}{2}$-sinx,$x∈(0,\frac{π}{2})$的單調(diào)遞減區(qū)間是( 。
A.$(0,\frac{π}{6})$B.$(0,\frac{π}{3})$C.$(\frac{π}{6},\frac{π}{2})$D.$(\frac{π}{3},\frac{π}{2})$

查看答案和解析>>

同步練習(xí)冊答案