10.已知函數(shù)$\left\{\begin{array}{l}{0,x>0}\\{-π,x=0}\\{{2}^{x},x<0}\end{array}\right.$,則f(f(f(-1)))的值等于(  )
A.π2-1B.π2+1C.D.0

分析 先求出f(-1)=${2}^{-1}=\frac{1}{2}$,從而f(f(-1))=f($\frac{1}{2}$)=0,進(jìn)而f(f(f(-1)))=f(0),由此能求出結(jié)果.

解答 解:∵函數(shù)$\left\{\begin{array}{l}{0,x>0}\\{-π,x=0}\\{{2}^{x},x<0}\end{array}\right.$,
∴f(-1)=${2}^{-1}=\frac{1}{2}$,
f(f(-1))=f($\frac{1}{2}$)=0,
f(f(f(-1)))=f(0)=-π.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若直線ax+2y+2=0與直線x-y-2=0垂直,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,B(-1,0),C(1,0),動(dòng)點(diǎn)A滿足$\frac{|AB|}{|AC|}$=m(m>0且m≠1).
(1)求動(dòng)點(diǎn)A的軌跡方程,并說明軌跡是什么曲線;
(2)若m=$\sqrt{3}$,點(diǎn)P為動(dòng)點(diǎn)A的軌跡曲線上的任意一點(diǎn),過點(diǎn)P作圓:x2+(y-2)2=1的切線,切點(diǎn)為Q.試探究平面內(nèi)是否存在定點(diǎn)R,使$\frac{|PQ|}{|PR|}$為定值,若存在,請求出點(diǎn)R的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=log${\;}_{\frac{1}{2}}$(6+x-x2)的單調(diào)遞增區(qū)間為($\frac{1}{2}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知一組數(shù)據(jù)3,5,4,7,6,那么這組數(shù)據(jù)的方差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.化簡$\sqrt{(1-2x)^{2}}$(x>$\frac{1}{2}$)的結(jié)果是2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.解關(guān)于x的不等式:
(1)3x2-7x>10
(2)$\frac{x-1}{2x+1}≤0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在數(shù)列{an}及{bn}中,an+1=an+bn+$\sqrt{a_n^2+b_n^2}$,bn+1=an+bn-$\sqrt{a_n^2+b_n^2}$,a1=1,b1=1.設(shè)${c_n}={2^n}({\frac{1}{a_n}+\frac{1}{b_n}})$,則數(shù)列{cn}的前n項(xiàng)和為2n+2-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合M={x|$\frac{x+3}{5-x}$>0},N={x|log3x≥1},則M∩N=( 。
A.[3,5)B.[1,3]C.(5,+∞)D.(-3,3]

查看答案和解析>>

同步練習(xí)冊答案