A. | 15 | B. | 31 | C. | 40 | D. | 121 |
分析 根據等比數列的通項公式列方程組求出a1公比q,再計算數列{an}的前5項和.
解答 解:等比數列{an}中,a6-a2=30,a3-a1=3,
∴$\left\{\begin{array}{l}{{{a}_{1}q}^{5}{-a}_{1}q=30}\\{{{a}_{1}q}^{2}{-a}_{1}=3}\end{array}\right.$,
∴$\frac{q{(q}^{4}-1)}{{q}^{2}-1}$=10,
即q(q2+1)=10,
∴q3+q-10=0,
即(q-2)(q2+2q+5)=0,
∴q-2=0或q2+2q+5=0,
解得q=2,∴a1=1;
∴數列{an}的前5項和為
S5=$\frac{{a}_{1}(1{-q}^{5})}{1-q}$=$\frac{1×(1{-2}^{5})}{1-2}$=31.
故選:B.
點評 本題考查了等比數列的通項公式和前n項和公式的應用問題,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | $-\frac{1}{3}$ | D. | -3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | 5 | C. | $\frac{9}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | 4 | C. | $4\sqrt{3}$ | D. | 8 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com