【題目】已知函數(shù).

(Ⅰ)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).

【答案】(Ⅰ)1;(Ⅱ)兩個(gè).

【解析】

(Ⅰ),由,解得,檢驗(yàn)時(shí)取得極小值即可;(II)令,由,得,討論單調(diào)性得時(shí)取得極小值,并證明極小值為.再由零點(diǎn)存在定理說明函數(shù)上各有一個(gè)零點(diǎn),即可解得

(I)定義域?yàn)?/span>.

.

由已知,得,解得.

當(dāng)時(shí),.

所以.

所以減區(qū)間為,增區(qū)間為.

所以函數(shù)時(shí)取得極小值,其極小值為,符合題意

所以.

(II)令,由,得.

所以.

所以減區(qū)間為,增區(qū)間為.

所以函數(shù)時(shí)取得極小值,其極小值為.

因?yàn)?/span>,所以.

所以.所以.

因?yàn)?/span>,

又因?yàn)?/span>,所以.

所以.

根據(jù)零點(diǎn)存在定理,函數(shù)上有且僅有一個(gè)零點(diǎn).

因?yàn)?/span>,.

,得.

又因?yàn)?/span>,所以.

所以當(dāng)時(shí),.

根據(jù)零點(diǎn)存在定理,函數(shù)上有且僅有一個(gè)零點(diǎn).

所以,當(dāng)時(shí),有兩個(gè)零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義矩陣的一種運(yùn)算,該運(yùn)算的意義為點(diǎn)在矩陣的變換下成點(diǎn)設(shè)矩陣

已知點(diǎn)在矩陣的變換后得到的點(diǎn)的坐標(biāo)為,試求點(diǎn)的坐標(biāo);

是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)矩陣變換后得到的點(diǎn)仍在該直線上?若存在,試求出所有這樣的直線;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間幾何體中,均為邊長為的等邊三角形,為腰長為的等腰三角形,平面平面,平面平面.

(1)試在平面內(nèi)作一條直線,使直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是圓上任意一點(diǎn),,線段的垂直平分線與半徑交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)記曲線軸交于兩點(diǎn),是直線上任意一點(diǎn),直線,與曲線的另一個(gè)交點(diǎn)分別為,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在雙曲線,)上,且雙曲線的一條漸近線的方程是

(1)求雙曲線的方程;

(2)若過點(diǎn)且斜率為的直線與雙曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍;

(3)設(shè)(2)中直線與雙曲線交于兩個(gè)不同的點(diǎn),若以線段為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為,集合,若對于任意的,都存在,使得成立,則稱曲線曲線,下列方程所表示的曲線中,是曲線的有______(寫出所有曲線的序號)

;②;③;④;⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間等分成n個(gè)小區(qū)間,在每一個(gè)小區(qū)間上作一個(gè)小矩形,使矩形的右端點(diǎn)落在函數(shù)的圖像上.若用表示第k個(gè)矩形的面積,表示這n個(gè)叫矩形的面積總和.

1)求的表達(dá)式;

2)利用數(shù)學(xué)歸納法證明,并求出的表達(dá)式

3)求的值,并說明的幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若存在,使得成立,求實(shí)數(shù)的取值范圍;

(3)定義:如果實(shí)數(shù)滿足, 那么稱更接近.對于(2)中的,問:哪個(gè)更接近?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案