分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)①構(gòu)造函數(shù)φ(x),根據(jù)函數(shù)的單調(diào)性證明即可;
②結(jié)合①求出0<lnx•ln(1-x)<$\sqrt{x(1-x)}$,結(jié)合不等式的性質(zhì)判斷即可.
解答 解:(Ⅰ)函數(shù)的定義域?yàn)椋?,1),由于f(1-x)=f(x),
故只需要考慮$x∈(0,\frac{1}{2})$的單調(diào)性 (1分)
$f'(x)=\frac{ln(1-x)}{x}-\frac{lnx}{1-x}=\frac{1}{1-x}[{\frac{1-x}{x}ln(1-x)-lnx}]$(2分)
令$g(x)=\frac{1-x}{x}ln(1-x)-lnx$則$g'(x)=-\frac{ln(1-x)+2x}{x^2}$(3分)
再令h(x)=ln(1-x)+2x則$h'(x)=2-\frac{1}{1-x}=\frac{1-2x}{1-x}$(4分)
當(dāng)$x∈(0,\frac{1}{2})$時(shí),h'(x)>0,則h(x)單調(diào)遞增,又h(0)=0,∴h(x)>h(0)=0
則g'(x)<0∴g(x)單調(diào)遞減∴$g(x)>g(\frac{1}{2})=0$∴f'(x)>0
∴f(x)的單調(diào)遞增區(qū)間為$(0,\frac{1}{2})$,單調(diào)遞減區(qū)間為$(\frac{1}{2},1)$(6分)
(Ⅱ)①令$φ(x)=lnx-\frac{x-1}{{\sqrt{x}}}=lnx-\sqrt{x}+\frac{1}{{\sqrt{x}}}(0<x<1)$,
$φ'(x)=\frac{1}{x}-\frac{1}{{2\sqrt{x}}}-\frac{1}{{2x\sqrt{x}}}=\frac{{-{{(\sqrt{x}-1)}^2}}}{{2x\sqrt{x}}}<0$
則φ(x)在(0,1)單調(diào)遞減,
∴φ(x)>φ(1)=0即$lnx>\frac{x-1}{{\sqrt{x}}}$(9分)
②由①得$-lnx<\frac{1-x}{{\sqrt{x}}}⇒-ln(1-x)<\frac{x}{{\sqrt{1-x}}}$
∴$0<(lnx)ln(1-x)<\sqrt{x(1-x)}$
∴${(x-\frac{1}{2})^2}+{y^2}={(x-\frac{1}{2})^2}+{[{(lnx)ln(1-x)}]^2}<{(x-\frac{1}{2})^2}+x(1-x)=\frac{1}{4}$,
故曲線y=f(x)上的所有點(diǎn)都落在圓$C:{(x-\frac{1}{2})^2}+{y^2}=\frac{1}{4}$內(nèi). (12分)
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,不等式的性質(zhì),是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 40 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
份(x) | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 |
水上狂歡節(jié)屆編號x | 1 | 2 | 3 | 4 | 5 |
外地游客人數(shù)y(單位:十萬) | 0.6 | 0.8 | 0.9 | 1.2 | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | (3,4) | C. | (-2,1) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com