19.已知$f(x)=\left\{\begin{array}{l}3x-3,x≥0\\{({\frac{1}{2}})^x}-4,x<0\end{array}\right.$則f(x)的零點(diǎn)為-2和1.

分析 函數(shù)的零點(diǎn)即函數(shù)圖象與x軸的交點(diǎn)的值,令f(x)=0求解即可.

解答 解:$f(x)=\left\{\begin{array}{l}3x-3,x≥0\\{({\frac{1}{2}})^x}-4,x<0\end{array}\right.$,
當(dāng)x≥0時(shí),f(x)=3x-3=0,
解得:x=1,
當(dāng)x<0時(shí),f(x)=$(\frac{1}{2})^{x}-4$=0,
解得:x=-2,
∴函數(shù)f(x)的零點(diǎn)為:-2和1.
故答案為:-2和1.

點(diǎn)評(píng) 本題考察了對(duì)分段函數(shù)的理解和零點(diǎn)的求法.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-ax-aln(x-1)(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a∈R時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx在(1,+∞)上是增函數(shù),且a>0.
(1)求a的取值范圍;
(2)求函數(shù)g(x)=ln(1+x)-x在[0,+∞)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線y2=-x與直線l:y=k(x+1)相交于A,B兩點(diǎn),
(Ⅰ)求k的取值范圍;
(Ⅱ)O為拋物線頂點(diǎn),求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:x2+y2-2x-24=0,直線ax-y+5=0(a>0)與圓交于A,B兩點(diǎn).
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)若弦AB的垂直平分線l過點(diǎn)P(-2,4),求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知O為△ABC的外心,AB=3,AC=4,$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且2x+y=1(x,y≠0),則cos∠BAC=(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在整數(shù)集Z中,被5所除得余數(shù)為k的所有整數(shù)組成一個(gè)“類”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4;給出四個(gè)結(jié)論:
(1)2015∈[0];(2)-3∈[3];(3)Z=[0]∪[1]∪[2]∪[3]∪[4];(4)“整數(shù)a,b屬于同一“類”的充要條件是“a-b∈[0]”.
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C:(x-a)2+(y-2+a)2=1,點(diǎn)A(3,0),O為坐標(biāo)原點(diǎn).
(Ⅰ)若a=1,求圓C過點(diǎn)A的切線方程;
(Ⅱ)若直線l:x-y+1=0與圓C交于M、N兩點(diǎn),且$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{3}{2}$,求a的值;
(Ⅲ)若圓C上存在點(diǎn)P,滿足|OP|=2|AP|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a∈R,若函數(shù)y=ex+ax有大于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.a<-1B.a>-1C.a>-$\frac{1}{e}$D.a<-$\frac{1}{e}$

查看答案和解析>>

同步練習(xí)冊(cè)答案