7.設(shè)x∈R,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,且$\overrightarrow{a}$⊥$\overrightarrow$,則$|{\overrightarrow a+2\overrightarrow b}|$=5.

分析 根據(jù)題意,由$\overrightarrow{a}$⊥$\overrightarrow$,分析可得$\overrightarrow{a}$•$\overrightarrow$=x-2=0,解可得x的值,即可得$\overrightarrow{a}$的坐標,由向量的坐標計算公式可得$\overrightarrow{a}$+2$\overrightarrow$的坐標,由向量模的公式計算可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,
若$\overrightarrow{a}$⊥$\overrightarrow$,則有$\overrightarrow{a}$•$\overrightarrow$=x-2=0,
解可得x=2,故$\overrightarrow{a}$=(2,1),
又由$\overrightarrow b=(1,-2)$,則$\overrightarrow{a}$+2$\overrightarrow$=(4,3),
則|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{9+16}$=5;
故答案為:5

點評 本題 考查向量的坐標運算,關(guān)鍵是求出向量$\overrightarrow{a}$+2$\overrightarrow$的坐標.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.200名職工年齡分布如圖所示,從中隨機抽取40名職工作樣本,采用系統(tǒng)抽樣方式,按1~200編號分為40組,分別為1~5,6~10,…,196~200,第5組抽取號碼為23,第9組抽取號碼為43;若采用分層抽樣,40-50歲年齡段應(yīng)抽取12人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a、b、c分別是△ABC的內(nèi)角A、B、C對的邊,$b=\sqrt{3}$.
(1)若$C=\frac{5π}{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求c;
(2)若$B=\frac{π}{3}$,求2a-c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在銳角△ABC中,角A,B,C所對的邊分別是a,b,c,已知$\overrightarrow m=({\sqrt{3}a,c}),\overrightarrow n=({sinA,cosC}),\overrightarrow m=3\overrightarrow n$.
(1)求C;
(2)求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,a,b,c分別是角A,B,C所對的邊,且3cosBcosC+1=3sinBsinC+cos2A.
(Ⅰ)求角A的大;
(Ⅱ)若△ABC的面積S=5$\sqrt{3}$,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在平行四邊形ABCD中,M、N分別為AB、AD上的點,且$\overrightarrow{AM}$=$\frac{4}{5}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$,連接AC、MN交于P點,若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$,則λ的值為( 。
A.$\frac{3}{5}$B.$\frac{3}{7}$C.$\frac{4}{11}$D.$\frac{4}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點為(3,4),復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,那么z•$\overline{z}$等于( 。
A.5B.-7C.12D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.射洪縣教育局從去年參加了計算機職稱考試,并且年齡在[25,55]歲的教師中隨機抽取n人的成績進行了調(diào)查,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù)分組低碳族的人數(shù)占本組的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)30q
第六組[50,55)150.3
(1)補全頻率分布直方圖,并求a、p、q的值;
(2)若用以上數(shù)據(jù)來估計今年參考老師的過關(guān)情況,并將每組的頻率視作對應(yīng)年齡階段老師的過關(guān)概率,考試是否過關(guān)互不影響.現(xiàn)有三名教師參加該次考試,年齡分別為41歲、47歲、53歲.記ξ為過關(guān)的人數(shù),請利用相關(guān)數(shù)據(jù)求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某人上午7時乘船出發(fā),以勻速v海里/小時(4≤v≤20)從A港前往相距50海里的B地,然后乘汽車以勻速ω千米/小時(30≤ω≤100)自B港前往相距300千米的C市,計劃當天下午4到9時到達C市.設(shè)乘船和汽車的所要的時間分別為x、y小時,如果所需要的經(jīng)費P=100+3(5-x)+(8-y)(單位:元)
(1)試用含有v、ω的代數(shù)式表示P;
(2)要使得所需經(jīng)費P最少,求x和y的值,并求出此時的費用.

查看答案和解析>>

同步練習(xí)冊答案