相關(guān)習(xí)題
 0  237806  237814  237820  237824  237830  237832  237836  237842  237844  237850  237856  237860  237862  237866  237872  237874  237880  237884  237886  237890  237892  237896  237898  237900  237901  237902  237904  237905  237906  237908  237910  237914  237916  237920  237922  237926  237932  237934  237940  237944  237946  237950  237956  237962  237964  237970  237974  237976  237982  237986  237992  238000  266669 

科目: 來源: 題型:選擇題

13.已知命題P:存在x∈R,mx2+1≤1,q對(duì)任意x∈R,x2+mx+1≥0,若p∨(¬q)為假命題,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,0)∪(2,+∞)B.(0,2]C.[0,2]D.Φ

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知向量$\overrightarrow m=(f(x),2cosx),\;\;\overrightarrow n=(sinx+cosx,1)$且$\overrightarrow m\;\;∥\;\;\overrightarrow n$.
(1)求函數(shù)f(x)的解析式.
(2)若函數(shù)f(x)的圖象向下方平移1個(gè)單位,然后保持縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的一半,得到函數(shù)g(x)的圖象.求函數(shù)g(x)在$x∈[0,\frac{π}{8}]$上的最大值及相應(yīng)的x值.

查看答案和解析>>

科目: 來源: 題型:填空題

11.若函數(shù)f(x)=sinx+$\sqrt{3}$cosx+2,x∈[0,2π],且關(guān)于x的方程f(x)=m有兩個(gè)不等實(shí)數(shù)根α,β,則sin(α+β)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求|OM|的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=(x-2)ex+ax(a∈R)
(1)試確定函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(2)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),當(dāng)x1+x2≤2時(shí),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為A,左右頂點(diǎn)為B,C,右焦點(diǎn)為F,|AF|=3,且△ABC的周長為14.
(1)求橢圓的離心率;
(2)過點(diǎn)M(4,0)的直線l與橢圓相交于不同兩點(diǎn)P,Q,點(diǎn)N在線段PQ上,設(shè)λ=$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$,試判斷點(diǎn)N是否在一條定直線上,并求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.某地政府在該地一水庫上建造一座水電站,用泄流水量發(fā)電,如圖是根據(jù)該水庫歷年的日泄流量的水文資料畫成的日泄流量X(單位:萬立方米)的頻率分布直方圖(不完整),已知X∈[0,120],歷年中日泄流量在區(qū)間[30,60)的年平均天數(shù)為156天,一年按364天計(jì).
(1)請(qǐng)把頻率直方圖補(bǔ)充完整;
(2)該水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每30萬立方米的日泄流量才能夠運(yùn)行一臺(tái)發(fā)電機(jī),如60≤X<90時(shí)才夠運(yùn)行兩臺(tái)發(fā)電機(jī),若運(yùn)行一臺(tái)發(fā)電機(jī),每天可獲利潤4000元,若不運(yùn)行,則該臺(tái)發(fā)電機(jī)每天虧損500元,以各段的頻率作為相應(yīng)段的概率,以水電站日利潤的期望值為決策依據(jù).問:為使水電站日利潤的期望值最大,該水電站應(yīng)安裝多少臺(tái)發(fā)電機(jī)?

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=BB1,AB1∩A1B=E,D為AC上的點(diǎn),B1C∥平面A1BD.
(1)求證:BD⊥平面A1ACC1;
(2)若AB=1,且AC•AD=1,求二面角B-A1D-B1的余弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.連續(xù)擲兩次骰子,以先后看到的點(diǎn)數(shù)m,n作為點(diǎn)P的坐標(biāo)(m,n),那么點(diǎn)P在圓x2+y2=17內(nèi)部(不包括邊界)的概率是$\frac{2}{9}$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知函數(shù)f(x)=ax3+bx+1,若f(a)=8,則f(-a)=-6.

查看答案和解析>>

同步練習(xí)冊(cè)答案