相關(guān)習(xí)題
 0  238335  238343  238349  238353  238359  238361  238365  238371  238373  238379  238385  238389  238391  238395  238401  238403  238409  238413  238415  238419  238421  238425  238427  238429  238430  238431  238433  238434  238435  238437  238439  238443  238445  238449  238451  238455  238461  238463  238469  238473  238475  238479  238485  238491  238493  238499  238503  238505  238511  238515  238521  238529  266669 

科目: 來源: 題型:解答題

4.某校從高二年級學(xué)生中隨機抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(1)若該校高二年級共有學(xué)生1000人,試估計成績不低于60分的人數(shù);
(2)求該校高二年級全體學(xué)生期中考試成績的眾數(shù)、中位數(shù)和平均數(shù)的估計值.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知命題:?x∈R,x2-ax+2a>0在R上恒成立,則實數(shù)a的取值范圍是( 。
A.(0,4)B.(-8,8)C.RD.(0,8)

查看答案和解析>>

科目: 來源: 題型:填空題

2.平面內(nèi)2條相交直線最多有1個交點;3條相交直線最多有3個交點;試猜想6條相交直線最多有15個交點.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且僅有2個子集,則a的取值構(gòu)成的集合為{0,1,-1}.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-a|+|x-3a|.
(1)若f(x)的最小值為2,求a的值;
(2)若對?x∈R,?a∈[-1,1],使得不等式m2-|m|-f(x)<0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{{{{ln}^2}x+lnx+1}}{x}$,$g(x)=\frac{x^2}{e^x}$.
(1)分別求函數(shù)f(x)與g(x)在區(qū)間(0,e)上的極值;
(2)求證:對任意x>0,f(x)>g(x).

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點為A,右焦點為F(1,0),過點A且斜率為1的直線交橢圓E于另一點B,交y軸于點C,$\overrightarrow{AB}=6\overrightarrow{BC}$.
(1)求橢圓E的方程;
(2)過點F作直線l與橢圓E交于M,N兩點,連接MO(O為坐標原點)并延長交橢圓E于點Q,求△MNQ面積的最大值及取最大值時直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,矩形ABCD中,$AB=2\sqrt{2}$,$AD=\sqrt{2}$,M為DC的中點,將△DAM沿AM折到△D′AM的位置,AD′⊥BM.
(1)求證:平面D′AM⊥平面ABCM;
(2)若E為D′B的中點,求三棱錐A-D′EM的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

14.“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)
性別
0~20002001~50005001~80008001~10000>10000
12368
021062
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?
積極型懈怠型總計
14822
61218
總計202040
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項和為Sn,a4=9,S3=15.
(1)求Sn;
(2)設(shè)數(shù)列$\{\frac{1}{S_n}\}$的前n項和為Tn,證明:${T_n}<\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案