相關(guān)習(xí)題
 0  239069  239077  239083  239087  239093  239095  239099  239105  239107  239113  239119  239123  239125  239129  239135  239137  239143  239147  239149  239153  239155  239159  239161  239163  239164  239165  239167  239168  239169  239171  239173  239177  239179  239183  239185  239189  239195  239197  239203  239207  239209  239213  239219  239225  239227  239233  239237  239239  239245  239249  239255  239263  266669 

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=cosx($\sqrt{3}$sinx-cosx)+m(m∈R),將y=f(x)的圖象向左平移$\frac{π}{6}$個單位后得到g(x)的圖象,且y=g(x)在區(qū)間[$\frac{π}{4}$,$\frac{π}{3}$]內(nèi)的最小值為$\frac{\sqrt{3}}{2}$.
(1)求m的值;
(2)在銳角△ABC中,若g($\frac{C}{2}$)=-$\frac{1}{2}$+$\sqrt{3}$,求sinA+cosB的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{2}{x+2}$,點O為坐標原點,點An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$與$\overrightarrow{i}$的夾角,則使得$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$<t恒成立的實數(shù)t的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,則該三棱柱內(nèi)切球的表面積與外接球的表面積的和為33π.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=axlnx+bx(a≠0)在(1,f(1))處的切線與x軸平行,
(1)試討論f(x)在(0,+∞)上的單調(diào)性;
(2)若存在a∈(e,+∞),對任意的${x_1},{x_2}∈[\frac{1}{3}e,3e]$都有|f(x1)-f(x2)|<(m+eln3)a+3e成立,求實數(shù)m的取值范圍.(e=2.71828…)

查看答案和解析>>

科目: 來源: 題型:解答題

17.在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥BD,PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N分別為PD,PB,CD的中點.
(1)求證:平面MBE⊥平面PAC;
(2)求三棱錐B-AME的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

16.等差數(shù)列{an}中,a1=2,公差為d≠0,Sn其前n項的和,且S2n=4Sn(n∈N+)恒成立.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{4}{{\sqrt{a_n}+\sqrt{{a_{n+1}}}}}$(n∈N+),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

15.在直角△ABC中,斜邊BC=6,以BC中點O為圓心,作半徑為2的圓,分別交BC于兩點,若|AP|=m,|AQ|=n,則m2+n2=26.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x∈(0,+∞)時,f(x)=2017x+log2017x,則f(x)在R上的零點的個數(shù)為3.

查看答案和解析>>

科目: 來源: 題型:填空題

13.向量$\overrightarrow a=(2,1),\overrightarrow b=(-1,2)$,則$(\overrightarrow a+\overrightarrow b)(\overrightarrow a-\overrightarrow b)$=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+2y-5≥0\\ x-y+1≥0\\ x+y-5≤0\end{array}\right.$,則z=(x-1)2+(y+1)2的最小值為(  )
A.$\frac{53}{4}$B.10C.$\frac{36}{5}$D.17

查看答案和解析>>

同步練習(xí)冊答案