相關(guān)習(xí)題
 0  265420  265428  265434  265438  265444  265446  265450  265456  265458  265464  265470  265474  265476  265480  265486  265488  265494  265498  265500  265504  265506  265510  265512  265514  265515  265516  265518  265519  265520  265522  265524  265528  265530  265534  265536  265540  265546  265548  265554  265558  265560  265564  265570  265576  265578  265584  265588  265590  265596  265600  265606  265614  266669 

科目: 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位長度,再向上平移2個單位長度,得到函數(shù)的圖象,則函數(shù)的圖象與函數(shù)的圖象(

A.關(guān)于直線對稱B.關(guān)于直線對稱

C.關(guān)于點對稱D.關(guān)于點對稱

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖對稱軸為坐標(biāo)軸,焦點均在軸上的兩橢圓,的離心率相同且均為,橢圓過點且其上頂點恰為橢圓的上焦點.是橢圓上異于的任意一點,直線與橢圓交于,兩點,直線與橢圓交于兩點.

1)求橢圓,的標(biāo)準(zhǔn)方程.

2)證明:

3是否為定值?若為定值.則求出該定值;否則,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)

1)若處取到極值,求,的值,并求的單調(diào)區(qū)間;

2)若對任意,都存在為自然對數(shù)的底數(shù)),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】為培養(yǎng)學(xué)生對傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識競賽.

1)根據(jù)題目條件完成下邊列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為學(xué)生的傳統(tǒng)文化知識競賽成績優(yōu)秀與文理分科有關(guān).

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計

甲班

乙班

20

總計

60

2)現(xiàn)已知,三人獲得優(yōu)秀的概率分別為,,,設(shè)隨機(jī)變量表示,三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附:

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,,側(cè)面底面,且,為棱上一點,且

1)求證:平面;

2)若二面角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線經(jīng)過坐標(biāo)原點,曲線的參數(shù)方程為為參數(shù)).以點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的極坐標(biāo)方程;

(2)設(shè)的交點為、的交點為、,且,求值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)(常數(shù)).

1)當(dāng)時,求曲線處的切線方程;

2)討論函數(shù)在區(qū)間上零點的個數(shù)(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目: 來源: 題型:

【題目】軸正半軸上的動點作曲線的切線,切點為,線段的中點為,設(shè)曲線軸的交點為

1)求的大小及的軌跡方程;

2)當(dāng)動點到直線的距離最小時,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在一次數(shù)學(xué)考試中,從甲,乙兩個班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計分析,他們成績的莖葉圖如圖所示,成績不小于90分為及格.

1)從兩班10名同學(xué)中各抽取一人,在有人及格的情況下,求乙班同學(xué)不及格的概率;

2)從甲班10人中取一人,乙班10人中取兩人,三人中及格人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,

1)求證:平面

2)點在線段上運(yùn)動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案