6.如圖,直角三角形的兩條直角邊AC,BC分別經(jīng)過(guò)正九邊形的兩個(gè)頂點(diǎn),則圖中∠1+∠2的結(jié)果是190°.

分析 根據(jù)正九邊形的特征,由多邊形內(nèi)角和定理:(n-2)•180 (n≥3)且n為整數(shù))先求出正九邊形的內(nèi)角和,進(jìn)一步得到2個(gè)內(nèi)角的和,根據(jù)三角形內(nèi)角和為180°,可求∠3+∠4的度數(shù),根據(jù)角的和差關(guān)系即可得到圖中∠1+∠2的結(jié)果.

解答 解:如圖,
(9-2)×180°÷9×2
=7×180°÷9×2
=280°,
∠3+∠4=180°-90°=90°,
∠1+∠2=280°-90°=190°.
故答案為:190°.

點(diǎn)評(píng) 考查了多邊形內(nèi)角與外角,關(guān)鍵是熟練掌握多邊形內(nèi)角和定理:(n-2)•180 (n≥3)且n為整數(shù)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列命題中的真命題是( 。
A.有一組對(duì)邊平行的四邊形是平行四邊形
B.有一個(gè)角是直角的四邊形是矩形
C.順次連結(jié)矩形各中點(diǎn)所得的四邊形是菱形
D.對(duì)角線互相垂直平分的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)計(jì)算
($\sqrt{3}$+1)($\sqrt{3}$-1)+$\sqrt{2}$+$\frac{1}{2}$$\sqrt{18}$-3$\sqrt{\frac{8}{9}}$
(2)解不等式組,并在數(shù)軸上表示它的解集
解不等式組$\left\{\begin{array}{l}{5x-1<3(x+1)}\\{\frac{2x-1}{3}-\frac{5x+1}{2}≤1}\end{array}\right.$,并把它們的解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,在正方形ABCD中,點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)A的坐標(biāo)是(-2,2),則點(diǎn)B的坐標(biāo)為(-1,4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目。ū徽{(diào)查的學(xué)生只選一類并且沒(méi)有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問(wèn)題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)若該中學(xué)有3000名學(xué)生,請(qǐng)估計(jì)該校喜愛電視劇節(jié)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,P是正方形內(nèi)一點(diǎn),已知AP=AD,BP=BC,則∠CPD=150°°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng),將邊長(zhǎng)為2的正方形ABCD與邊長(zhǎng)為2$\sqrt{2}$的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
(1)小明發(fā)現(xiàn)DG⊥BE,請(qǐng)你幫他說(shuō)明理由;
(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,點(diǎn)P的坐標(biāo)為(4,3),把點(diǎn)P繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到點(diǎn)Q.
(1)寫出點(diǎn)Q的坐標(biāo)是(-3,4);
(2)若把點(diǎn)Q向右平移m個(gè)單位長(zhǎng)度,向下平移2m個(gè)單位長(zhǎng)度后,得到的點(diǎn)Q′恰好落在第三象限,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,∠1=∠2,∠3=∠4,∠5=∠6.求證:ED∥FB.在下面的括號(hào)中填上推理依據(jù).
證明:∵∠3=∠4( 已知 )
∴CF∥BD內(nèi)錯(cuò)角相等,兩直線平行
∴∠5+∠CAB=180°兩直線平行,同旁內(nèi)角互補(bǔ)
∵∠5=∠6( 已知 )
∴∠6+∠CAB=180°( 等式的性質(zhì) )
∴AB∥CD同旁內(nèi)角互補(bǔ),兩直線平行
∴∠2=∠EGA兩直線平行,同位角相等
∵∠1=∠2( 已知 )
∴∠1=∠EGA( 等量代換  )
∴ED∥FB同位角相等,兩直線平行.

查看答案和解析>>

同步練習(xí)冊(cè)答案