【題目】如圖所示,直線l1l2相交于點O,且∠1+∠3=2(∠2+∠4),求下列角的度數(shù).(1)∠2+∠4;(2)∠1,∠2.

【答案】(1)∠2+∠4=120°;(2)∠1=120°,∠2=60°.

【解析】

(1)根據(jù)∠1與∠2、∠3與∠4互為鄰補角得∠1=180°-∠2,∠3=180°-∠4,將∠1、∠3代入∠1+∠3=2(∠2+∠4),可得∠2+∠4度數(shù);
(2)根據(jù)對頂角相等有∠2=∠4,又由(1)知∠2+∠4=120°,故∠2=∠4=60°,進而得到∠2的鄰補角∠1=120°.

(1)∵∠1∠2、∠3∠4互為鄰補角,

∴∠1=180°﹣∠2,∠3=180°﹣∠4,

∵∠1+∠3=2(∠2+∠4),

∴180°﹣∠2+180°﹣∠4=2(∠2+∠4),即360°﹣(∠2+∠4)=2(∠2+∠4),

∴3(∠2+∠4)=360°,

∠2+∠4=120°;

(2)∵∠2∠4是對頂角,

∴∠2=∠4,

(1)知,∠2+∠4=120°,

∴2∠2=120°,故∠2=60°,

∵∠1=180°﹣∠2,

∴∠1=120°,

∠1=120°,∠2=60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題探究:如圖1,ACBDCE均為等邊三角形,點A、DE在同一直線上,連接BE

①求證:CDA≌△CEB

②求∠AEB的度數(shù).

(2)問題變式:如圖2,ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點A、D、E在同一直線上,CMDCEDE邊上的高,連接BE

①請求出∠AEB的度數(shù)

②直接寫出線段AE、CM、BE之間的數(shù)量關系,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn)分別是 ABCD的邊AB,CD的中點,則圖中平行四邊形的個數(shù)共有( ).

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(1) (2)(-)×(-

(3) (4)(-2a23+ a8÷a2 +3a·a5

(5)(2x-5)(2x+5)-2x(2x-3) (6)(3x+y)2-(3x-y)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解市民獲取新聞的最主要途徑某市記者開展了一次抽樣調查,根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)以上信息解答下列問題:

(1)這次接受調查的市民總人數(shù)是   ;請補全條形統(tǒng)計圖;

(2)扇形統(tǒng)計圖中,電視所對應的圓心角的度數(shù)是

(3)若該市約有90萬人,請你估計其中將電腦和手機上網(wǎng)作為獲取新聞的最主要途徑的總人數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8 ,AD=10,點E是CD的中點,將這張紙片依次折疊兩次:第一次折疊紙片使點A與點E重合,如圖2,折痕為MN,連接ME、NE;第二次折疊紙片使點N與點E重合,如圖3,點B落到B′處,折痕為HG,連接HE,則下列結論正確的個數(shù)是( ) ①ME∥HG;②△MEH是等邊三角形;③∠EHG=∠AMN;④tan∠EHG=

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系內,點A的坐標為(0,24),經(jīng)過原點的直線l1與經(jīng)過點A的直線l2相交于點B,點B的坐標為(18,6).

(1)求直線l1,l2對應的函數(shù)表達式;

(2)C為線段OB上一動點(C不與點O,B重合),作CD∥y軸交直線l2于點D,設點C的縱坐標為a,求點D的坐標(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩列火車分別從A,B兩城同時相向勻速駛出,甲車開往終點B城,乙車開往終點A城,乙車比甲車早到達終點;如圖,是兩車相距的路程d(千米)與行駛時間t(小時)的函數(shù)關系圖象.
(1)A,B兩城相距千米,經(jīng)過小時兩車相遇;
(2)分別求出甲、乙兩車的速度;
(3)直接寫出甲車距A城的路程S1、乙車距A城的路程S2與t的函數(shù)關系式;(不必寫出t的范圍)
(4)當兩車相距100千米時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB邊的垂直平分線BCD,AC邊的垂直平分線BCE, 相交于點O,ADE的周長為6cm

1)求BC的長;

2)分別連結OAOB、OC,若△OBC的周長為16cm,求OA的長;

查看答案和解析>>

同步練習冊答案