【題目】如圖,AD,BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā),沿O→C→D→O的路線勻速運(yùn)動.設(shè)∠APB=y(單位:度),那么y與點(diǎn)P運(yùn)動的時(shí)間x(單位:秒)的關(guān)系圖是( )
A.
B.
C.
D.
【答案】B
【解析】解:(1)當(dāng)點(diǎn)P沿O→C運(yùn)動時(shí),
當(dāng)點(diǎn)P在點(diǎn)O的位置時(shí),y=90°,
當(dāng)點(diǎn)P在點(diǎn)C的位置時(shí),
∵OA=OC,
∴y=45°,
∴y由90°逐漸減小到45°;(2)當(dāng)點(diǎn)P沿C→D運(yùn)動時(shí),
根據(jù)圓周角定理,可得
y≡90°÷2=45°;(3)當(dāng)點(diǎn)P沿D→O運(yùn)動時(shí),
當(dāng)點(diǎn)P在點(diǎn)D的位置時(shí),y=45°,
當(dāng)點(diǎn)P在點(diǎn)0的位置時(shí),y=90°,
∴y由45°逐漸增加到90°.
故選:B.
根據(jù)圖示,分三種情況:(1)當(dāng)點(diǎn)P沿O→C運(yùn)動時(shí);(2)當(dāng)點(diǎn)P沿C→D運(yùn)動時(shí);(3)當(dāng)點(diǎn)P沿D→O運(yùn)動時(shí);分別判斷出y的取值情況,進(jìn)而判斷出y與點(diǎn)P運(yùn)動的時(shí)間x(單位:秒)的關(guān)系圖是哪個(gè)即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點(diǎn)A,B,O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑩的直角頂點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于下列各組條件,不能判定△≌△的一組是 ( )
A. ∠A=∠A′,∠B=∠B′,AB=A′B′
B. ∠A=∠A′,AB=A′B′,AC=A′C′
C. ∠A=∠A′,AB=A′B′,BC=B′C′
D. AB=A′B′,AC=A′C′,BC=B′C′
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,P為等邊△ABC內(nèi)一點(diǎn),∠APB=113°,∠APC=123°,試說明:以AP,BP,CP為邊長可以構(gòu)成一個(gè)三角形,并確定所構(gòu)成三角形的各內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=4,將矩形ABCD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到矩形A′B′C′D′,則點(diǎn)B經(jīng)過的路徑與BA,AC′,C′B′所圍成封閉圖形的面積是多少?(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】是否存在整數(shù)m,使關(guān)于x的不等式1+>+與關(guān)于x的不等式x+1> 的解集相同?若存在,求出整數(shù)m和不等式的解集;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣8mx+16m﹣1(m>0)與x軸的交點(diǎn)分別為A(x1 , 0),B(x2 , 0).
(1)求證:拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)若AB=2,求此拋物線的解析式.
(3)已知x軸上兩點(diǎn)C(2,0),D(5,0),若拋物線y=mx2﹣8mx+16m﹣1(m>0)與線段CD有交點(diǎn),請寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2)
(1)寫出點(diǎn)A、B的坐標(biāo):A( , )、B( , )
(2)將△ABC先向左平移1個(gè)單位長度,再向上平移2個(gè)單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個(gè)頂點(diǎn)坐標(biāo)A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點(diǎn)B(1,4),且與直線y=﹣x﹣11平行.
(1)求直線AB的解析式并求出點(diǎn)C的坐標(biāo);
(2)根據(jù)圖象,寫出關(guān)于x的不等式0<2x﹣4<kx+b的解集;
(3)現(xiàn)有一點(diǎn)P在直線AB上,過點(diǎn)P作PQ∥y軸交直線y=2x﹣4于點(diǎn)Q,若線段PQ的長為3,求P點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com