17.設(shè)A={θ|θ為銳角},B={θ|θ為小于90°的角},C={θ|θ為第一象限的角},D={θ|θ為小于90°的正角},則下列等式中成立的是( 。
A.A=BB.B=CC.A=CD.A=D

分析 根據(jù)A={θ|θ為銳角}={θ|0°<θ<90°},D={θ|θ為小于90°的正角}={θ|0°<θ<90°},可得結(jié)論.

解答 解:根據(jù)A={θ|θ為銳角}={θ|0°<θ<90°},D={θ|θ為小于90°的正角}={θ|0°<θ<90°},
可得A=D.
故選D.

點(diǎn)評(píng) 本題考查象限角和任意角,考查學(xué)生對(duì)概念的理解,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.下列敘述:
①函數(shù)$f(x)=sin(2x-\frac{π}{3})$是奇函數(shù);
②函數(shù)$f(x)=cos(2x-\frac{π}{3})$的一條對(duì)稱(chēng)軸方程為$x=-\frac{π}{3}$;
③函數(shù)$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,$x∈[0,\frac{π}{2}]$,則f(x)的值域?yàn)?[0,\sqrt{2}]$;
④函數(shù)$f(x)=\frac{cosx+3}{cosx}$,$x∈(-\frac{π}{2},\frac{π}{2})$有最小值,無(wú)最大值.
所有正確結(jié)論的序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.一質(zhì)點(diǎn)按規(guī)律s=2t3運(yùn)動(dòng),則其在時(shí)間段[1,2]內(nèi)的平均速度為14m/s,在t=1時(shí)的瞬時(shí)速度為6m/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.定義在R上的函數(shù)f(x)滿(mǎn)足f'(x)>1-f(x),f(0)=3,f'(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>ex+2(e其中為自然對(duì)數(shù)的底數(shù))的解集是( 。
A.{x|x>0}B.{x|x<0}C.{x|x<-1或x>1}D.{x|x<-1或0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=x3-tx2+3x在區(qū)間[1,4]上單調(diào)遞增,則實(shí)數(shù)t的取值范圍是( 。
A.$(-∞,\frac{51}{8}]$B.(-∞,3]C.$[\frac{51}{8},+∞)$D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)拋物線x2=4y的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上的一點(diǎn),且PA⊥l,A為垂足,若直線AF的傾斜角為135°,則|PF|=( 。
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)平面上的伸縮變換的坐標(biāo)表達(dá)式為$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$,則在這一坐標(biāo)變換下正弦曲線y=sinx的方程變?yōu)閥=3sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知-6<a<8,2<b<3,分別求2a+b,a-b,$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在四邊形ABCD中,$\overrightarrow{AC}=({2,4})$,$\overrightarrow{BD}=({-2,1})$,則該四邊形的面積為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案