9.已知$\overrightarrow{a\;}$、$\overrightarrow{b\;}$滿足$|{\overrightarrow{b\;}}|=2|{\overrightarrow{a\;}}|=2\overrightarrow{a\;}•\overrightarrow{b\;}=2$,$({\overrightarrow{c\;}}\right.-$$\left.{\overrightarrow{a\;}})•$$({\overrightarrow{c\;}}\right.-$$\left.{\overrightarrow{b\;}})$=0,則$\overrightarrow{c\;}•$$\overrightarrow{a\;}$的最大值為( 。
A.$\frac{3}{2}$B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{2+\sqrt{3}}}{2}$D.$\frac{{4+\sqrt{3}}}{4}$

分析 由已知可設(shè)$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow,\overrightarrow{OC}=\overrightarrow{c}$,以O(shè)A所在直線為x軸建立平面直角坐標(biāo)系,得到$\overrightarrow{a}、\overrightarrow$的坐標(biāo),設(shè)出$\overrightarrow{c}$的坐標(biāo),利用向量垂直的坐標(biāo)運(yùn)算得到C的軌跡,從而求得$\overrightarrow{c\;}•$$\overrightarrow{a\;}$的最大值.

解答 解:由$|{\overrightarrow{b\;}}|=2|{\overrightarrow{a\;}}|=2\overrightarrow{a\;}•\overrightarrow{b\;}=2$,得$|\overrightarrow{a}|=1$,$|\overrightarrow|=2$,$\overrightarrow{a}•\overrightarrow=1$.
設(shè)$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow,\overrightarrow{OC}=\overrightarrow{c}$,
以O(shè)A所在直線為x軸建立平面直角坐標(biāo)系,
則$\overrightarrow{a}=(1,0)$,$\overrightarrow=(1,\sqrt{3})$,$\overrightarrow{c}=(x,y)$,$\overrightarrow{c}-\overrightarrow{a}=(x-1,y)$,$\overrightarrow{c}-\overrightarrow=(x-1,y-\sqrt{3})$,
又$({\overrightarrow{c\;}}\right.-$$\left.{\overrightarrow{a\;}})•$$({\overrightarrow{c\;}}\right.-$$\left.{\overrightarrow{b\;}})$=0,
∴$(x-1)^{2}+y(y-\sqrt{3})=0$,即$(x-1)^{2}+(y-\frac{\sqrt{3}}{2})^{2}=\frac{3}{4}$.
又$\overrightarrow{c}•\overrightarrow{a}=x$,∴$\overrightarrow{c\;}•$$\overrightarrow{a\;}$的最大值為1+$\frac{\sqrt{3}}{2}$=$\frac{2+\sqrt{3}}{2}$.
故選:C.

點(diǎn)評 本題考查平面向量的數(shù)量積運(yùn)算,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在圓x2+y2=4上任取一點(diǎn)P,過P作x軸的垂線段,D為垂足,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),記線段PD中點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)$A({-\sqrt{3},0}),B({\sqrt{3},0})$,試判斷(并說明理由)軌跡C上是否存在點(diǎn)Q,使得$\overrightarrow{AQ}•\overrightarrow{BQ}=0$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( 。
A.y=1,y=$\frac{x}{x}$B.y=$\sqrt{x-2}$•$\sqrt{x+2}$,y=$\sqrt{{x}^{2}-4}$
C.y=x與y=logaax(a>0且a≠1)D.y=|x|,$y={({\sqrt{x}})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),點(diǎn)P在雙曲線上且不與頂點(diǎn)重合,過F2作∠F1PF2的角平分線的垂線,垂足為A.若|OA|=b,則該雙曲線的離心率為(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡2(bmod4).下面程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的i等于(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ),θ∈(0,π)的圖象關(guān)于y軸對稱,則θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)$f(x)=\frac{sinθ}{3}{x^3}+\frac{{\sqrt{3}cosθ}}{2}{x^2}+tanθ$,其中$θ∈({\frac{π}{6}\;,\;\frac{π}{2}}]$,則f'(1)的取值范圍是[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.集合{x|x2=1}的子集個(gè)數(shù)是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)滿足$f(x)=\frac{1}{3}{x^3}-f'(1)•{x^2}-x$,則f'(1)的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案