18.如圖所示,運行流程圖,則輸出的n的值等于( 。
A.6B.5C.4D.3

分析 根據(jù)已知中的流程圖,我們模擬程序的運行結(jié)果,首先分析程序框圖,循環(huán)體為“當型“循環(huán)結(jié)構(gòu),按照循環(huán)結(jié)構(gòu)進行運算,求出滿足題意時及繼續(xù)循環(huán)的條件是否滿足,當繼續(xù)循環(huán)的條件不滿足時,即可得到輸出結(jié)果.

解答 解:模擬程序的運行,可得:
當m=2,n=0,a=4,b=5時,執(zhí)行循環(huán)
第1次循環(huán):m=3,n=1,a=4,b=5,
第2次循環(huán):m=4,n=1,a=4,b=5,
第3次循環(huán):m=5,n=2,a=4,b=5,
第4次循環(huán):m=6,n=3,a=4,b=5,
第5次循環(huán):m=7,n=4,a=4,b=5,
第6次循環(huán):m=8,n=4,a=4,b=5,
第7次循環(huán):m=9,n=4,a=4,b=5,
第8次循環(huán):m=10,n=4,a=4,b=5,
此時不滿足循環(huán)條件,退出循環(huán),輸出n的值為4.
故選:C.

點評 本題考查的知識點是程序框圖,模擬循環(huán)的執(zhí)行過程是解答此類問題常用的辦法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知實數(shù)x、y、z滿足x2+2y2+3z2=4,設(shè)T=xy+yz,則T的取值范圍是( 。
A.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$]B.[$-\frac{\sqrt{6}}{6}$,$\frac{2\sqrt{6}}{3}$]C.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$]D.[$-\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知f($\frac{1-x}{1+x}$)=$\frac{1-{x}^{2}}{1+{x}^{2}}$,則f(x)的解析式可取為( 。
A.$\frac{x}{1+{x}^{2}}$B.-$\frac{2x}{1+{x}^{2}}$C.$\frac{2x}{1+{x}^{2}}$D.-$\frac{x}{1+{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.以下四個命題中,真命題的個數(shù)是( 。
①“若a+b≥2,則a,b中至少有一個不小于1”的逆命題
②?α0,β0∈R,使得sin(α00)=sinα0+sinβ0
③若a∈R,則“$\frac{1}{a}$<1”是“a>1”的必要不充分條件24
④命題“?x0∈R,x02+2x0+3<0”的否定是“?x∈R,x2+2x+3>0”
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知等差數(shù)列{an}的前n項和為Sn,公差為2,且a1,S2,S4成等比數(shù)列,則數(shù)列{an}的通項公式an等于( 。
A.2n+1B.2n-3C.2n-1D.2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.命題“?x∈R,x2-4<0或x2-4x>0”的否定為( 。
A.?x∈R,x2-4≥0或x2-4x≤0B.?x∈R,x2-4≥0且x2-4x≤0
C.?x∈R,x2-4≥0或x2-4x≤0D.?x∈R,x2-4≥0且x2-4x≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的圖象兩相鄰對稱中心的距離為$\frac{π}{2}$,且f(x)≤$f(\frac{π}{6})$=1(x∈R).
(1)求函數(shù)f(x)的解析式;
(2)當x∈$[0,\frac{π}{2}]$時,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+ax2-x-1在R上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知$\vec m$=(pcosx+q,psinx),$\vec n$=(1,-$\sqrt{3}$),f(x)=$\vec m•\vec n$,△ABC的角A,B,C所對的邊分別為a,b,c.
(Ⅰ)若p<0時,f(x)在[0,π]上的最大值為2,最小值為-1,求p,q的值;
(Ⅱ)在(Ⅰ)的條件下,若f(A)=1,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,求邊a,角C.

查看答案和解析>>

同步練習冊答案