分析 由已知中棱錐P-ABC中,側(cè)棱PA、PB、PC兩兩垂直,Q為底面△ABC內(nèi)一點(diǎn),若點(diǎn)Q到三個(gè)側(cè)面的距離分別為2,2,2$\sqrt{2}$,由此知,PQ是以此三垂線段為長(zhǎng)寬高的長(zhǎng)方體的體對(duì)角線,由此求出PQ長(zhǎng),進(jìn)而得到以線段PQ為直徑的球的半徑,代入球的表面積公式,即可得到答案.
解答 解:∵棱錐P-ABC中,側(cè)棱PA、PB、PC兩兩垂直,
又∵底面△ABC內(nèi)一點(diǎn)Q到三個(gè)側(cè)面的距離分別為2,2,2$\sqrt{2}$
∴PQ=$\sqrt{4+4+8}$=4
則線段PQ為直徑的球的半徑為2
∴以線段PQ為直徑的球的表面積S=4πR2=16π.
故答案為:16π.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是球的表面積,棱錐的結(jié)構(gòu)特征,其中根據(jù)棱錐P-ABC中,側(cè)棱PA、PB、PC兩兩垂直,Q為底面△ABC內(nèi)一點(diǎn),若點(diǎn)Q到三個(gè)側(cè)面的距離分別為2,2,2$\sqrt{2}$,求出PQ的長(zhǎng),是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∧¬q | B. | ¬p∧q | C. | ¬p∧¬q | D. | p∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-3,1] | B. | [-1,3] | C. | [1,3] | D. | (-3,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{3}$,-1 | C. | -$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$,1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com