2.若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0)上對(duì)任意兩個(gè)不相等的實(shí)數(shù)a,b總有$\frac{f(a)-f(b)}{a-b}$>0,且f(2)=0,則使xf(x)<0的x的取值范圍是(  )
A.-2<x<2B.x>2或-2<x<0C.-2<x<0D.x<-2或x>2

分析 由題意可得偶函數(shù)f(x)在(-∞,0)上單調(diào)遞增,故它在(0,+∞)上單調(diào)遞減,通過討論x的范圍,求出不等式xf(x)的解集即可.

解答 解:f(x)是定義在R上的偶函數(shù),
且對(duì)任意的a,b∈(-∞,0),
當(dāng)a≠b時(shí),都有$\frac{f(a)-f(b)}{a-b}$>0,
故函數(shù)f(x)在(-∞,0]上單調(diào)遞增,
故它在(0,+∞)上單調(diào)遞減.
故x>0時(shí),xf(x)<0,即f(x)<f(2),解得:x>2,
x<0時(shí),xf(x)<0,即f(x)>f(-2),解得:-2<x<0,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和奇偶性的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖所示,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng),如表所示.
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此規(guī)律下去,則a2009+a2010+a2011等于(  )
A.1 003B.1 005C.1 006D.2 010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)用輾轉(zhuǎn)相除法求840與1 764 的最大公約數(shù);
(2)把666(7)化為十進(jìn)制,把342(10)化為八進(jìn)制.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an=3Sn-1+4(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)令bn=log2$\frac{{a}_{n+2}}{7}$,cn=$\frac{_{n}}{{2}^{n+1}}$,其中n∈N+,記數(shù)列{cn}的前項(xiàng)和為Tn,是否存在k∈N+,使得Tn≥Tk恒成立,若存在這樣的k的值,請(qǐng)求出;若不存在這樣的k的值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求值化簡(jiǎn):
(1)$\frac{{1+\frac{1}{2}lg9-lg240}}{{1-\frac{2}{3}lg27+lg\frac{36}{5}}}$+1
(2)$\frac{{{{({a^{\frac{2}{3}}}•{b^{-1}})}^{-\frac{1}{2}}}•{a^{\frac{1}{2}}}•{b^{\frac{1}{3}}}}}{{\root{6}{{a•{b^5}}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.同時(shí)擲兩顆骰子,計(jì)算向上的點(diǎn)數(shù)和為5的概率為( 。
A.$\frac{1}{36}$B.$\frac{1}{9}$C.$\frac{1}{18}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=$\sqrt{2}$,且D為BC中點(diǎn).
(1)求證:A1C∥平面AB1D;
(2)設(shè)N為棱CC1的中點(diǎn),且滿足AB⊥AC,求證:平面AB1D⊥平面ABN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如果一個(gè)數(shù)列的前5項(xiàng)分別是1,2,3,4,5,則下列說法正確的是( 。
A.該數(shù)列一定是等差數(shù)列B.該數(shù)列一定不是等差數(shù)列
C.該數(shù)列不一定是等差數(shù)列D.以上結(jié)論都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若tanθ=2,則$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值為(  )
A.0B.1C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案