10.(1)證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$\overrightarrow{AB}\;•\;\overrightarrow{BC}=-\;\frac{65}{2}$,$cosB=\frac{13}{14}$,b=3.求a,c(a>c)

分析 (1)建立單位圓,在單位圓中作出角,找出相應(yīng)的單位圓上的點(diǎn)的坐標(biāo),由向量的數(shù)量積公式化簡整理既得;
(2)與條件利用兩個(gè)向量的數(shù)量積的定義求得ac=35,再利用余弦定理求得a2+c2=74,再根據(jù)a>c可得a和c的值.

解答 解:(1)證明:如圖,在平面直角坐標(biāo)系中,以原點(diǎn)為圓心,
作一單位圓,再以原點(diǎn)為頂點(diǎn),
x軸非負(fù)半軸為始邊分別作角α,β.
設(shè)它們的終邊分別交單位圓于點(diǎn)A(cosα,sinα),
B(cos(-β),sin(-β))
即有兩單位向量$\overrightarrow{OA}$=(cosα,sinα),$\overrightarrow{OB}$=(cosβ,-sinβ),
∴$\overrightarrow{OA}$$•\overrightarrow{OB}$=cosαcosβ-sinαsinβ,
∵$\overrightarrow{OA}$$•\overrightarrow{OB}$=|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|•cos(α+β),且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,
∴cos(α+β)=cosαcosβ-sinαsinβ
(2)∵$\overrightarrow{AB}\;•\;\overrightarrow{BC}=-\;\frac{65}{2}$,$cosB=\frac{13}{14}$,b=3.
∴$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{65}{2}$
∴accosB=$\frac{65}{2}$,
又cosβ=$\frac{13}{14}$,
∴ac=35
由余弦定理:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{13}{14}$
∴a2+c2=74,由ac=35,a>c,
解得a=7,c=5.

點(diǎn)評 本題考查平面向量的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,利用三角函數(shù)的性質(zhì)合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=cos2x+sinx,則f(x)的最大值與最小值的和為( 。
A.0B.$\frac{1}{4}$C.$\frac{9}{4}$D.$\frac{{2\sqrt{3}+6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設(shè)斜率為1的直線l經(jīng)過左焦點(diǎn)與橢圓C交于A、B兩點(diǎn),求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.老張身高176cm,他爺爺、父親、兒子的身高分別是173cm、170cm和182cm,因兒子的身高與父親的身高有關(guān),父親的身高用x表示,兒子的身高用y來表示.
(1)完成答題卡中的表格;
(2)用回歸分析的方法得到的回歸方程為$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,則預(yù)計(jì)老張的孫子的身高為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且 PA=AB=2,AC=1,點(diǎn)E是PD的中點(diǎn).
(1)求證:PB∥平面AEC;
(2)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)y=$\frac{2}{3}$x3-2x2+3,
(1)求在點(diǎn)(1,$\frac{5}{3}$)處的切線方程,
(2)求函數(shù)在[-1,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow a$,$\overrightarrow b$不共線,且對任意實(shí)數(shù)x,不等式$|{\overrightarrow a-x\overrightarrow b}|≥|{\overrightarrow a-\overrightarrow b}|$恒成立,則下列結(jié)論一定成立的是( 。
A.$\overrightarrow a$•$\overrightarrow b$-${\overrightarrow b^2}$=0B.${\overrightarrow a^2}-\overrightarrow a$•$\overrightarrow b$=0C.$\overrightarrow a$⊥$\overrightarrow b$D.$|{\overrightarrow a}|=|{\overrightarrow b}|$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在區(qū)間[0,4]上隨機(jī)產(chǎn)生兩個(gè)均勻隨機(jī)數(shù)分別賦給a,b,則|a-b|≤1的概率為( 。
A.$\frac{9}{16}$B.$\frac{7}{16}$C.$\frac{9}{32}$D.$\frac{23}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若$\overrightarrow{a}$=(6,m),$\overrightarrow$=(-1,3),且$\overrightarrow{a}⊥\overrightarrow$,則m=( 。
A..2B..-2C..3D.6

查看答案和解析>>

同步練習(xí)冊答案