16.隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)用而生,某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司M的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系,求y關(guān)于x的線性回歸方程,并預(yù)測(cè)M公司2017年4月份(即x=7時(shí))的市場(chǎng)占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:
 報(bào)廢年限
車型
 1年 2年 3年 4年 總計(jì)
 A 20 35 35 10 100
 B 10 30 40 20 100
經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入500元,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?
(參考公式:回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overrightarrow{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

分析 (Ⅰ)求出回歸系數(shù),可得回歸方程,即可得出結(jié)論;
(Ⅱ)分別計(jì)算相應(yīng)的數(shù)學(xué)期望,即可得出結(jié)論.

解答 解:(Ⅰ)由題意,$\overline{x}$=3.5,$\overline{y}$=16,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overrightarrow{x})^{2}}$=$\frac{35}{17.5}$=2,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=16-2×3.5=9,
∴$\stackrel{∧}{y}$=2x+9,
x=7時(shí),$\stackrel{∧}{y}$=2×7+9=23,即預(yù)測(cè)M公司2017年4月份(即x=7時(shí))的市場(chǎng)占有率為23%;
(Ⅱ)由頻率估計(jì)概率,每輛A款車可使用1年,2年,3年、4年的概率分別為0.2,0.35,0.35,0.1,
∴每輛A款車的利潤(rùn)數(shù)學(xué)期望為(500-1000)×0.2+(1000-1000)×0.35+(1500-1000)×0.35+(2000-1000)×0.1=175元;
每輛B款車可使用1年,2年,3年、4年的概率分別為0.1,0.3,0.4,0.2,
∴每輛B款車的利潤(rùn)數(shù)學(xué)期望為(500-1200)×0.1+(1000-1200)×0.3+(1500-1200)×0.4+(2000-1200)×0.2=150元;
∵175>150,
∴應(yīng)該采購(gòu)A款車.

點(diǎn)評(píng) 本題考查數(shù)學(xué)知識(shí)在實(shí)際生活中的應(yīng)用,考查學(xué)生的閱讀能力,對(duì)數(shù)據(jù)的處理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若二項(xiàng)式(x-$\frac{1}{\sqrt{x}}$)n的展開(kāi)式中只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中常數(shù)項(xiàng)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知各項(xiàng)均為整數(shù)的數(shù)列{an}中,a1=2,且對(duì)任意的n∈N*,滿足an+1-an<2n+$\frac{1}{2},{a_{n+2}}-{a_n}>3×{2^n}$-1,則a2017=22017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.對(duì)于函數(shù)f(x)=xlnx有如下結(jié)論:
①該函數(shù)為偶函數(shù);
②若f′(x0)=2,則x0=e;
③其單調(diào)遞增區(qū)間是[$\frac{1}{e}$,+∞);
④值域是[$\frac{1}{e}$,+∞);
⑤該函數(shù)的圖象與直線y=-$\frac{1}{e}$有且只有一個(gè)公共點(diǎn).(本題中e是自然對(duì)數(shù)的底數(shù))
其中正確的是②③⑤(請(qǐng)把正確結(jié)論的序號(hào)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=(x2-x-$\frac{1}{a}$)eax(a>0).
(1)求函數(shù)y=f(x)的最小值;
(2)若存在唯一實(shí)數(shù)x0,使得f(x0)+$\frac{3}{a}$=0成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.觀察下列關(guān)系式:
-1=-1.
-1+3=2,
-1+3-5=-3,
-1+3-5+7=4

則-1+3-5+7…+(-1)n(2n-1)=(-1)n•n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.給定△ABC的三個(gè)條件:A=60°,b=4,a=2,則這樣的三角形解的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥1}\\{x-y≤0}\\{x+y-6≤0}\end{array}\right.$,則z=2x+y的最大值為(  )
A.9B.4C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)向量前$\overrightarrow{BA}$=(3,-2),$\overrightarrow{AC}$=(0,6),則|$\overrightarrow{BC}$|等于(  )
A.2$\sqrt{6}$B.5C.$\sqrt{26}$D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案