分析 利用“當(dāng)n=1時(shí),a1=S1.當(dāng)n≥2時(shí),an=Sn-Sn-1”可得an=11-2n.得到當(dāng)n≤5時(shí),an>0;當(dāng)n≥6時(shí),an<0.進(jìn)而得到當(dāng)n≤6時(shí),數(shù)列{|an|}的前n項(xiàng)和Sn′=Sn.當(dāng)n≥6時(shí),數(shù)列{|an|}的前n項(xiàng)和Sn′=(a1+a2+a3+a4+a5)-(a6+a7+a8+…+an)=2S5-Sn,即可得出.
解答 解:當(dāng)n=1時(shí),a1=S1=10-1=9.
當(dāng)n≥2時(shí),an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=11-2n.
當(dāng)n=1時(shí),上式也成立.
∴an=11-2n.
令an≥0,解得n≤5,
∴當(dāng)n≤5時(shí),an>0;當(dāng)n≥6時(shí),an<0.
∴當(dāng)n≤5時(shí),數(shù)列{|an|}的前n項(xiàng)和Sn′=10n-n2.
當(dāng)n≥6時(shí),數(shù)列{|an|}的前n項(xiàng)和Sn′=(a1+a2+a3+a4+a5)-(a6+a7+a8+…+an)=2S5-Sn=n2-10n+50.
綜上可知數(shù)列{|an|}的前n項(xiàng)和Sn′=$\left\{\begin{array}{l}{10n-{n}^{2}(n≤5)}\\{{n}^{2}-10n+50(n>5)}\end{array}\right.$.
點(diǎn)評(píng) 本題考查了利用“當(dāng)n=1時(shí),a1=S1.當(dāng)n≥2時(shí),an=Sn-Sn-1”求得an、數(shù)列{|an|}的前n項(xiàng)和Sn′、等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式、分類(lèi)討論等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9x2+16y2=1 | B. | 16x2+9y2=1 | C. | $\frac{x^2}{16}+\frac{y^2}{9}$=1 | D. | $\frac{x^2}{9}+\frac{y^2}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 8 | C. | 12 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com