11.設P為函數(shù)f(x)=sinπx的圖象上的一個最高點,Q為函數(shù)g(x)=cosπx的圖象上的一個最低點.
(1)求|PQ|的最小值;
(2)求f(x)的圖象與g(x)的圖象的交點中,相鄰的三個交點構成的三角形的面積;
(3)求函數(shù)f(x)的圖象關于直線x=$\frac{1}{4}$對稱的函數(shù)h(x)圖象的解析式,并求出$x∈[-\frac{2}{3},\frac{1}{3}]$的值域.

分析 (1)設出P和Q的坐標,根據(jù)兩點之間的距離公式求解.
(2)根據(jù)正余弦函數(shù)的圖象可知,相鄰的三個交點構成的三角形是一個等腰三角形,其高為$\sqrt{2}$,底邊長為一個周期T=2.可求的三角形的面積;
(3)根據(jù)函數(shù)f(x)的圖象關于直線x=$\frac{1}{4}$對稱的函數(shù)h(x)圖象,求出解析式,$x∈[-\frac{2}{3},\frac{1}{3}]$時,求出內層函數(shù)的取值范圍,結合三角函數(shù)的圖象和性質,求出f(x)的取值最大和最小值,即得到f(x)的值域.

解答 解:(1)P為函數(shù)f(x)=sinπx的圖象上的一個最高點,Q為函數(shù)g(x)=cosπx的圖象上的一個最低點.
設f(x)最高點坐標為P$(\frac{1}{2}+2{k_1},1){k_1}∈Z$,g(x)最低點坐標為Q(1+2k2,-1)k2∈Z
∴$|{PQ}|=\sqrt{{{[2{{({k_1}-{k_2})}^2}-\frac{1}{2}]}^2}+4}$
當k1-k2=0時|PQ|min=$\frac{{\sqrt{17}}}{2}$.
(2)函數(shù)f(x)=sinπx和函數(shù)g(x)=cosπx的周期T=$\frac{2π}{π}=2$,
其相鄰的三個交點構成一個等腰三角形,其高為$\sqrt{2}$,底邊長為一個周期T=2.
三角形的面積S=$\frac{1}{2}×\sqrt{2}×2$=$\sqrt{2}$;
(3)函數(shù)f(x)的圖象與函數(shù)h(x)圖象關于直線x=$\frac{1}{4}$對稱,
設h(x)圖象上的點M(x,h(x)),關于直線x=$\frac{1}{4}$對稱的點N為(x-$\frac{1}{2}$,-h(x)),
N點在函數(shù)f(x)的圖象上,
∴-h(x)=f(x-$\frac{1}{2}$)=sinπ(x-$\frac{1}{2}$)
∴h(x)=-sin($πx-\frac{π}{2}$)=cosπx
∵$x∈[-\frac{2}{3},\frac{1}{3}]$,
∴πx∈[$-\frac{2π}{3}$,$\frac{π}{3}$]
當$πx=-\frac{2π}{3}$時,函數(shù)h(x)取得最小值為$-\frac{1}{2}$,
當πx=0時,函數(shù)h(x)取得最大值為1.
故得$x∈[-\frac{2}{3},\frac{1}{3}]$時函數(shù)h(x)的值域為 $[-\frac{1}{2},1]$.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質的運用,圖象對稱關系的解析式的求法.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…+$\frac{{{x^{2015}}}}{2015}$;g(x)=1-x+$\frac{x^2}{2}$-$\frac{x^3}{3}$+$\frac{x^4}{4}$-…-$\frac{{{x^{2015}}}}{2015}$;設函數(shù)F(x)=[f(x+3)]2015•[g(x-4)]2016,且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內,則b-a的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,已知直線l1,l2,l3的斜率分別為k1,k2,k3,則( 。
A.k1<k2<k3B.k3<k2<k1C.k1<k3<k2D.k2<k1<k3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求函數(shù)y=sin(2x-$\frac{π}{3}$)的單調遞減區(qū)間,并敘述怎樣由函數(shù)y=sinx的圖象變換得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=4,那么$\overrightarrow{a}$•(2$\overrightarrow{a}$-$\overrightarrow$)的值為24.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若圓C經過坐標原點和點(4,0),且與直線y=1相切,則圓C的方程是( 。
A.${(x-2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$B.${(x-2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$
C.${(x+2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$D.${(x+2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.
商店名稱ABCDE
銷售額x(千萬元)35679
利潤額y(百萬元)23345
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)當銷售額為4(千萬元)時,估計利潤額的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)y=Asin(ωx+φ)在一個周期內的圖象如圖所示,求其解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c.已知$asinB=\sqrt{3}bcosA$.
(1)求角A的大小;
(2)若$a=\sqrt{7},b=2$,求△ABC的面積.

查看答案和解析>>

同步練習冊答案