已知雙曲線
,
為雙曲線
的右焦點(diǎn),點(diǎn)
,
為
軸正半軸上的動(dòng)點(diǎn)。
則
的最大值為( )
試題分析:由題意知
,設(shè)
,
,由三角形余弦定理可得
最大為
點(diǎn)評(píng):將求的角轉(zhuǎn)化為三角形三邊表示,進(jìn)而可看做求函數(shù)的最值點(diǎn)問(wèn)題,其間用到了均值不等式
求最值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知橢圓的焦點(diǎn)為
,
P是橢圓上一動(dòng)點(diǎn),如果延長(zhǎng)
F1P到
Q,使
,那么動(dòng)點(diǎn)
Q的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
過(guò)點(diǎn)
的直線
與拋物線
交于
兩點(diǎn),記線段
的中點(diǎn)為
,過(guò)點(diǎn)
和這個(gè)拋物線的焦點(diǎn)
的直線為
,
的斜率為
,則直線
的斜率與直線
的斜率之比可表示為
的函數(shù)
__ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知點(diǎn)
是離心率為
的橢圓
:
上的一點(diǎn),斜率為
的直線
交橢圓
于
、
兩點(diǎn),且
、
、
三點(diǎn)不重合.
(1)求橢圓
的方程;
(2)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知
、
分別為橢圓
:
的上、下焦點(diǎn),其中
也是拋物線
:
的焦點(diǎn),點(diǎn)
是
與
在第二象限的交點(diǎn),且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)
(1,3)和圓
:
,過(guò)點(diǎn)
的動(dòng)直線
與圓
相交于不同的兩點(diǎn)
,在線段
取一點(diǎn)
,滿足:
,
(
且
)。
求證:點(diǎn)
總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知橢圓
的長(zhǎng)軸長(zhǎng)為
,離心率為
,
分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn)
,且與直線
相切.
(1)求橢圓
及動(dòng)圓圓心軌跡
的方程;
(2) 在曲線
上有兩點(diǎn)
、
,橢圓
上有兩點(diǎn)
、
,滿足
與
共線,
與
共線,且
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知橢圓
過(guò)點(diǎn)
,橢圓
左右焦點(diǎn)分別為
,上頂點(diǎn)為
,
為等邊三角形.定義橢圓
C上的點(diǎn)
的“伴隨點(diǎn)”為
.
(1)求橢圓
C的方程;
(2)求
的最大值;
(3)直線
l交橢圓
C于
A、
B兩點(diǎn),若點(diǎn)
A、
B的“伴隨點(diǎn)”分別是
P、
Q,且以
PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)
O.橢圓
C的右頂點(diǎn)為
D,試探究Δ
OAB的面積與Δ
ODE的面積的大小關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)F
1、F
2為雙曲線
(
)的兩個(gè)焦點(diǎn),若F
1、F
2、P(0,2
)是正三角形的三個(gè)頂點(diǎn),則雙曲線離心率是( )
A. | B.2 | C. | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知拋物線x2=4py(p>0)與雙曲線
有相同的焦點(diǎn)F,點(diǎn)A 是兩曲線的一個(gè)交點(diǎn),且AF丄y軸,則雙曲線的離心率為
A,
B.
C.
D.
查看答案和解析>>