6.空間直角坐標(biāo)系中,設(shè)A(-1,2,-3),B(-1,0,2),點(diǎn)M和點(diǎn)A關(guān)于y軸對(duì)稱,則|BM|=3.

分析 先求出點(diǎn)M(1,2,3),由此利用兩點(diǎn)間距離公式能求出|BM|的值.

解答 解:∵空間直角坐標(biāo)系中,設(shè)A(-1,2,-3),B(-1,0,2),
點(diǎn)M和點(diǎn)A關(guān)于y軸對(duì)稱,
∴M(1,2,3),
|BM|=$\sqrt{(1+1)^{2}+(2-0)^{2}+(3-2)^{2}}$=3.
故答案為:3.

點(diǎn)評(píng) 本題考查空間中兩點(diǎn)間距離的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意兩點(diǎn)間距離公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若直線l過點(diǎn)(-3,1)且被圓x2+y2=25截得的弦長為8,則直線l的方程是( 。
A.x=-3或4x+3y-15=0B.4x-3y+15=0
C.4x+3y-15=0D.x=-3或4x-3y+15=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2sinx(cosx+sinx)-1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x-alnx-1(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥2時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知兩個(gè)圓O1和O2,它們的半徑分別是2和4,且|O1O2|=8,若動(dòng)圓M與圓O1內(nèi)切,又與O2外切,則動(dòng)圓圓心M的軌跡方程是(  )
A.B.橢圓C.雙曲線一支D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓M的圓心在直線x+y=0上,半徑為1,直線l:6x-8y-9=0被圓M截得的弦長為$\sqrt{3}$,且圓心M在直線l的右下方.
(1)求圓M的標(biāo)準(zhǔn)方程;
(2)直線mx+y-m+1=0與圓M交于A,B兩點(diǎn),動(dòng)點(diǎn)P滿足|PO|=$\sqrt{2}$|PM|(O為坐標(biāo)原點(diǎn)),試求△PAB面積的最大值,并求出此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,若z=a(4x+2y)+b(a>0,b>0)的最大值為7,則$\frac{6}{a}$+$\frac{1}$的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=(ex-1-1)(x-1),則( 。
A.當(dāng)x<0,有極大值為2-$\frac{4}{e}$B.當(dāng)x<0,有極小值為2-$\frac{4}{e}$
C.當(dāng)x>0,有極大值為0D.當(dāng)x>0,有極小值為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x≤1\\ y≥-1\end{array}\right.$,若m=2x-y,則m的最小值為-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案