分析 先利用線面平行的判定定理證明直線C1A∥平面BDE,再將線面距離轉(zhuǎn)化為點(diǎn)面距離,最后利用等體積法求點(diǎn)面距離即可.
解答 解:如圖:連接AC,交BD于O,在三角形CC1A中,易證OE∥C1A,
從而C1A∥平面BDE,
∴直線AC1與平面BED的距離即為點(diǎn)A到平面BED的距離,設(shè)為h,
在三棱錐E-ABD中,VE-ABD=$\frac{1}{3}$S△ABD×EC=$\frac{1}{3}$×$\frac{1}{2}$×2×2×$\sqrt{2}$=$\frac{2\sqrt{2}}{3}$
在三棱錐A-BDE中,BD=2$\sqrt{2}$,BE=$\sqrt{6}$,DE=$\sqrt{6}$,
∴S△EBD=$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{6-2}$=2
∴VA-BDE=$\frac{1}{3}$×S△EBD×h=$\frac{1}{3}$×2$\sqrt{2}$×h=$\frac{2\sqrt{2}}{3}$
∴h=1
故答案為:1.
點(diǎn)評 本題主要考查了線面平行的判定,線面距離與點(diǎn)面距離的轉(zhuǎn)化,三棱錐的體積計(jì)算方法,等體積法求點(diǎn)面距離的技巧,屬于中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
非統(tǒng)計(jì)專業(yè) | 統(tǒng)計(jì)專業(yè) | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com