16.如圖,單擺的擺線離開(kāi)平衡位置的位移S(厘米)和時(shí)間t(秒)的函數(shù)關(guān)系是S=$\frac{1}{2}$sin(2t+$\frac{π}{3}$),則擺球往復(fù)擺動(dòng)一次所需要的時(shí)間是π秒.

分析 利用函數(shù)y=Asin(ωx+φ)中參數(shù)的物理意義可知擺球來(lái)回?cái)[動(dòng)一次所需的時(shí)間為一個(gè)周期T.

解答 解:擺球往復(fù)擺動(dòng)一次所需要的時(shí)間即為函數(shù)S=$\frac{1}{2}$sin(2t+$\frac{π}{3}$)的最小正周期.
根據(jù)正弦函數(shù)的性質(zhì)得出T=$\frac{2π}{2}$=π.
故答案為:π.

點(diǎn)評(píng) 本題考查了函數(shù)y=Asin(ωx+φ)中參數(shù)的物理意義,體現(xiàn)了數(shù)學(xué)在物理中的應(yīng)用,是個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖所示,在△OAB中,M、N分別是OA、OB的中點(diǎn),點(diǎn)P在梯形ABNM區(qū)域(含邊界)上移動(dòng),且$\overrightarrow{OP}=x\overrightarrow{OM}+y\overrightarrow{ON}$,則4x+3y的取值范圍是[3,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)=$\frac{{{e^{ax}}}}{x}$,(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若f(x)在(0,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求函數(shù)f(x)在[m,m+2](m>0)上的最小值;
(Ⅲ)求證:$\sum_{i=1}^n{\frac{1}{{i•{e^i}}}}<\frac{7}{4e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦點(diǎn)為F(-1,0),O為坐標(biāo)原點(diǎn),點(diǎn)$G({1,\frac{{\sqrt{2}}}{2}})$在橢圓上,過(guò)點(diǎn)F的直線l交橢圓于不同的兩點(diǎn) A、B.
(1)求橢圓C的方程;
(2)求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下面幾種推理是合情推理的是( 。
①由圓的性質(zhì)類(lèi)比出球的有關(guān)性質(zhì);
②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是180°歸納出所有三角形的內(nèi)角和都是180°;
③三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得凸n邊形內(nèi)角和是(n-2)•180°;
④所有自然數(shù)都是整數(shù),4是自然數(shù),所以4是整數(shù).
A.①④B.②③C.①②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若直線l:y=k(x+1)與圓C:(x-1)2+y2=1恒有公共點(diǎn),則k的取值范圍是$-\frac{{\sqrt{3}}}{3}≤k≤\frac{{\sqrt{3}}}{3}$,,直線l的傾斜角的取值范圍是$θ∈[{0,\frac{π}{6}}]∪[{\frac{5π}{6},π})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知正四棱錐P-ABCD,底面正方形的邊長(zhǎng)是2,高與斜高的夾角為30°,那么正四棱錐的側(cè)面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值為(  )
A.2B.$\frac{3}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知正四棱柱ABCD-A1B1C1D1中,AB=2,$C{C_1}=2\sqrt{2}$,E為棱CC1的中點(diǎn),則直線AC1與平面BDE的距離為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案