12.已知向量$\overrightarrow a$=(sinθ,-1)與$\overrightarrow b$=(2,cosθ)互相垂直,其中θ∈(0,π).
(1)求sinθ和cosθ的值;
(2)求$cos(θ+\frac{π}{4})$值.

分析 (1)利用兩個向量的數(shù)量積公式,兩個向量垂直的性質(zhì),同角三角函數(shù)的基本關(guān)系,求得sinθ和cosθ 的值.
(2)利用兩角差的余弦公式求得 $cos(θ+\frac{π}{4})$ 的值.

解答 解(1)向量$\overrightarrow a$=(sinθ,-1)與$\overrightarrow b$=(2,cosθ)互相垂直,其中θ∈(0,π).
∴$\overrightarrow{a}•\overrightarrow$=2sinθ-cosθ=0,即2sinθ=cosθ,
再根據(jù)sinθ>0,sin2θ+cos2θ=1,求得$sinθ=\frac{{\sqrt{5}}}{5}$,$cosθ=\frac{{2\sqrt{5}}}{5}$.
(2)由(1)可得 $cos(θ+\frac{π}{4})$=cosθcos$\frac{π}{4}$-sinθsin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}•\frac{2\sqrt{5}}{5}$-$\frac{\sqrt{5}}{5}•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{10}}{10}$.

點評 本題主要考查兩個向量的數(shù)量積公式,兩個向量垂直的性質(zhì),同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.給出下列命題,正確的命題是( 。
A.底面是矩形的平行六面體是長方體
B.底面是正方形的直平行六面體是正四棱柱
C.底面是正方形的直四棱柱是正方體
D.所有棱長都相等的直平行六面體是正方體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右焦點為$(\sqrt{2},0)$,且經(jīng)過點$(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{7}}}{2})$,過橢圓的左頂點A作直線l⊥x軸,點M為直線l上的動點(點M與點A不重合),點B為橢圓右頂點,直線BM交橢圓C于點P.
(1)求橢圓C的方程;
(2)求證:AP⊥OM;
(3)試問$\overrightarrow{OP}•\overrightarrow{OM}$是否為定值?若是定值,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在三棱錐中A-BCD,A(0,0,2),B(4,4,0),C(4,0,0),D(0,4,3),若下列網(wǎng)格紙上小正方形的邊長為1,則三棱錐A-BCD的三視圖不可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-2lnx.
(1)求證:f(x)在(1,+∞)上單調(diào)遞增.
(2)若f(x)≥2tx-$\frac{1}{{x}^{2}}$在x∈(0,1]內(nèi)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,離心率為$\frac{{2\sqrt{5}}}{5}$,過點F2且與x軸垂直的直線被橢圓截得的線段長為$\frac{{2\sqrt{5}}}{5}$.
(1)求橢圓的方程;
(2)設(shè)過點F2的直線l與橢圓相交于A,B兩點,若M(-6,0),求當(dāng)三角形MAB的面積S最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x(x-m)2在x=2處取得極小值,則常數(shù)m的值為(  )
A.2B.6C.2或6D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.P點在曲線$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,點Q在曲線θ=$\frac{π}{4}$(ρ∈R)上,則|PQ|的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.三位同學(xué)乘同一列火車,火車有10節(jié)車廂,則至少有2位同學(xué)上了同一車廂的概率為$\frac{7}{25}$.

查看答案和解析>>

同步練習(xí)冊答案