分析 (Ⅰ)利用二倍角和輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,
(II)將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的減區(qū)間上,解不等式得函數(shù)的單調(diào)遞減區(qū)間;
解答 解:函數(shù)f(x)=sinx(cosx-sinx)+$\frac{1}{2}$
化簡可得:f(x)=sinxcosx-sin2x$+\frac{1}{2}$=$\frac{1}{2}$sin2x+$\frac{1}{2}$cos2x=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)
(Ⅰ)∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
(II)由$\frac{π}{2}+2kπ≤$2x+$\frac{π}{4}$$≤\frac{3π}{2}+2kπ$,k∈Z,
得$kπ+\frac{π}{8}$≤x≤$kπ+\frac{5π}{8}$,k∈Z,
∴f(x)的單調(diào)遞減區(qū)間為[$kπ+\frac{π}{8}$,$kπ+\frac{5π}{8}$]k∈Z
點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{5π}{6}$] | B. | [0,$\frac{2π}{3}$] | C. | [$\frac{5π}{6}$,π] | D. | [$\frac{2π}{3}$,π] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com