4.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=90°,PA⊥面ABCD,若PA=AB=BC=$\frac{1}{2}$AD.
(1)求證:CD⊥平面PAC;
(2)側(cè)棱PA上中點E,求證:BE∥平面PCD;
(3)求二面角A-PD-C的余弦值.

分析 (1)推導出PA⊥CD,AC⊥CD,由此能證明CD⊥平面PAC.
(2)取PD中點F,連結(jié)BE、EF、FC,推導出四邊形BEFC為平行四邊形,從而BE∥CF,由此能證明BE∥平面PCD.
(3)設(shè)G為AD的中點,連結(jié)CG,過G作GH⊥PD于H,連結(jié)CH,由三垂線定理得∠GHC是二面角A-PD-C的平面角,由此能求出二面角A-PD-C的余弦值.

解答 證明:(1)∵PA⊥底面ABCD,CD?底面ABCD,
∴PA⊥CD,
在底面ABCD中,∵∠ABC=∠BAD=90°,AB=BC=$\frac{1}{2}AD$,
∴AC=CD=$\frac{\sqrt{2}}{2}AD$,∴AC⊥CD,
∵PA∩AC=A,∴CD⊥平面PAC.
(2)取PD中點F,連結(jié)BE、EF、FC,
則EF∥AD,且EF=$\frac{1}{2}AD$,
由已知∠ABC=∠BAD=90°,∴BC∥AD,
又BC=$\frac{1}{2}AD$,∴BC∥EF,且BC=EF,
∴四邊形BEFC為平行四邊形,∴BE∥CF,
∵BE?平面PCD,CF?平面PCD,
∴BE∥平面PCD.
解:(3)設(shè)G為AD的中點,連結(jié)CG,則CG⊥AD,
又∵平面ABCD⊥平面PAD,
∴CG⊥平面PAD,
過G作GH⊥PD于H,連結(jié)CH,
由三垂線定理得CH⊥PD,
∴∠GHC是二面角A-PD-C的平面角,
設(shè)AD=2,則PA=AB=CG=DG=1,DP=$\sqrt{5}$,
在△PAD中,$\frac{GH}{PA}=\frac{DG}{DP}$,∴GH=$\frac{1}{\sqrt{5}}$,
∴tan$∠GHC=\frac{CG}{GH}$=$\sqrt{5}$,cos$∠GHC=\frac{\sqrt{6}}{6}$.
∴二面角A-PD-C的余弦值為$\frac{\sqrt{6}}{6}$.

點評 本題考查線面垂直、線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,∠C=$\frac{π}{2}$,AC=BC,M,N分別是BC、AB的中點,沿直線MN將△BMN折起使點B到達B′,且∠B′MB=$\frac{π}{3}$,則B′A與平面ABC所成角的正切值為( 。
A.$\frac{\sqrt{2}}{5}$B.$\frac{\sqrt{3}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知極坐標系與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸為正半軸,曲線C1的直角坐標方程為$\frac{{x}^{2}}{3}+{y}^{2}$=1,直線l的直角坐標方程為x+y-4=0,曲線C2的極坐標方程為$ρ=\frac{1}{1-cosθ}$.
(Ⅰ)在曲線C1上求一點P,使得點P到直線l的距離最大;
(Ⅱ)過極點O作互相垂直的兩條直線分別交曲線C2于A,B和C,D四點,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,莖葉圖記錄了某城市甲、乙兩個觀測點連續(xù)三天觀測到的空氣質(zhì)量指數(shù)(AQI).乙觀測點記錄中有一個數(shù)字模糊無法確認,已知該數(shù)是0,1,…,9中隨機的一個數(shù),并在圖中以a表示.
(Ⅰ)求乙觀測點記錄的AQI的平均值超過甲觀測點記錄的AQI的平均值的概率;
(Ⅱ)當a=2時,分別從甲、乙兩觀測點記錄的數(shù)據(jù)中各隨機抽取一天的觀測值,記這兩觀測值之差的絕對值為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,四棱錐A-BCDE中,F(xiàn)為AD的中點,DC⊥平面ABC,CD∥BE,AB=AC=BC=CD=2BE.
(1)求證:EF⊥平面ACD;
(2)求平面ADE與平面ABD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.等比數(shù)列{an}的各項均為正數(shù),且a2=4,a42=4a1a5
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+log2a3+…+log2an,求數(shù)列{$\frac{1}{_{n}}$}的前n項和Sn,并證明:Sn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.從5名男生和4名女生中選出4人參加辯論比賽,如果4人中男生和女生各兩人,則不同的選法種數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.各項均不相等的等差數(shù)列{an}的前四項的和為S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)記Tn為數(shù)列{$\frac{{a}_{n-1}}{{2}^{n}}$}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.直線x-my-8=0與拋物線y2=8x交于A、B兩點,O為坐標原點,則△OAB面積的取值范圍是[64,+∞).

查看答案和解析>>

同步練習冊答案