A. | ($\frac{{e}^{2}}{2e-1}$,+∞) | B. | (e,+∞) | C. | (1,e) | D. | (1,$\frac{{e}^{2}}{2e-1}$) |
分析 令g(x)=|x-2|ex,則方程有6解等價(jià)于g2(x)-2ag(x)+a=0有6解,判斷g(x)的單調(diào)性得出g(x)=t的根的分布情況,得出方程t2-2at+a=0的根的分布情況,利用二次函數(shù)的性質(zhì)列不等式組解出a的范圍.
解答 解:∵(x-2)2ex+ae-x=2a|x-2|,
∴(x-2)2e2x-2a|x-2|ex+a=0,
令g(x)=|x-2|ex=$\left\{\begin{array}{l}{(x-2){e}^{x},x≥2}\\{(2-x){e}^{x},x<2}\end{array}\right.$,則g′(x)=$\left\{\begin{array}{l}{{(x-1)e}^{x},x≥2}\\{(1-x){e}^{x},x<2}\end{array}\right.$,
∴當(dāng)x≥2或x<1時(shí),g′(x)>0,當(dāng)1<x<2時(shí),g′(x)<0,
∴g(x)在(-∞,1)上單調(diào)遞增,在(1,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
∴當(dāng)x=1時(shí),g(x)取得極大值t(1)=e,
又x→-∞時(shí),g(x)→0,g(2)=0,x→+∞時(shí),g(x)→+∞,
作出g(x)的函數(shù)圖象如圖所示:
令g(x)=t,
由圖象可知:當(dāng)0<t<e時(shí),方程g(x)=t<有3解;當(dāng)t=0或t>e時(shí),方程g(x)=t有1解;
當(dāng)t=e時(shí),方程g(x)=t有2解;當(dāng)t<0時(shí),方程g(x)=t無(wú)解.
∵方程(x-2)2e2x-2a|x-2|ex+a=0有6解,
即g2(x)-2ag(x)+a=0有6解,
∴關(guān)于t的方程t2-2at+a=0在(0,e)上有2解,
∴$\left\{\begin{array}{l}{4{a}^{2}-4a>0}\\{a>0}\\{{e}^{2}-2ae+a>0}\\{0<a<e}\end{array}\right.$,解得1<a<$\frac{{e}^{2}}{2e-1}$.
故選D.
點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性的判斷,方程根的個(gè)數(shù)與函數(shù)圖象的關(guān)系,二次函數(shù)的性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 3 | C. | -5 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i | B. | -1 | C. | 1 | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=cos({2x+\frac{π}{2}})$ | B. | y=sin22x-cos22x | C. | y=sin2x+cos2x | D. | y=sin2xcos2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 9 | C. | 16 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{4\sqrt{3}-3}}{10}$ | B. | $\frac{{4\sqrt{3}+3}}{10}$ | C. | $\frac{{3\sqrt{3}-4}}{10}$ | D. | $\frac{{3\sqrt{3}+4}}{10}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com