7.一艘海警船從港口A出發(fā),以每小時40海里的速度沿南偏東40°方向直線航行,30分鐘到達B處,這時候接到從C處發(fā)出的一求救信號,已知C在B的北偏東65°,港口A的東偏南20°處,那么B,C兩點的距離是10$\sqrt{2}$海里.

分析 根據(jù)題意畫出圖象確定∠BAC、∠ABC的值,進而可得到∠ACB的值,根據(jù)正弦定理可得到BC的值

解答 解:如圖,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,從而∠ACB=45°.
在△ABC中,由正弦定理可得BC=$\frac{AB}{sin45°}$×sin30°=10$\sqrt{2}$.
故答案為:$10\sqrt{2}$;

點評 本題主要考查正弦定理的應用,考查三角形的解法,屬于基本知識的考查

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.下列四個命題:
①“等邊三角形的三個內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x-k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,則$\overrightarrow a$⊥$(\overrightarrow b-\overrightarrow c)$”的否命題,
其中真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=log${\;}_{\frac{1}{2}}$(6+x-x2)的單調(diào)遞增區(qū)間為($\frac{1}{2}$,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.化簡$\sqrt{(1-2x)^{2}}$(x>$\frac{1}{2}$)的結(jié)果是2x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.解關于x的不等式:
(1)3x2-7x>10
(2)$\frac{x-1}{2x+1}≤0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若變量x,y滿足條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,則目標函數(shù)z=2x+y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在數(shù)列{an}及{bn}中,an+1=an+bn+$\sqrt{a_n^2+b_n^2}$,bn+1=an+bn-$\sqrt{a_n^2+b_n^2}$,a1=1,b1=1.設${c_n}={2^n}({\frac{1}{a_n}+\frac{1}{b_n}})$,則數(shù)列{cn}的前n項和為2n+2-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.Sn為等差數(shù)列{an}的前n項和,a1=2,S3=12,則a6=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若A∪{-1,1}={-1,1},則這樣的集合A共有4個.

查看答案和解析>>

同步練習冊答案