10.在△ABC中,已知AB=$\sqrt{2}$,AC=$\sqrt{5}$,tan∠BAC=-3,則BC邊上的高等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 求出∠BAC的余弦函數(shù)值,然后求解BC的距離,通過求解三角形求解即可.

解答 解:在△ABC中,已知AB=$\sqrt{2}$,AC=$\sqrt{5}$,tan∠BAC=-3,
可得cos∠BAC=-$\sqrt{\frac{1}{1+tan∠BAC}}$=-$\frac{\sqrt{10}}{10}$,sin∠BAC=$\frac{3\sqrt{10}}{10}$.
由余弦定理可得:BC=$\sqrt{A{C}^{2}+A{B}^{2}-2AC•ABcos∠BAC}$=$\sqrt{5+2-2×\sqrt{2}×\sqrt{5}×(-\frac{\sqrt{10}}{10})}$=3,
設(shè)BC邊上的高為h,
三角形面積為:$\frac{1}{2}AB•ACsin∠BAC$=$\frac{1}{2}$BC•h,
h=$\frac{\sqrt{2}×\sqrt{5}×\frac{3\sqrt{10}}{10}}{3}$=1.
故選:A.

點(diǎn)評(píng) 本題考查三角形的解法,余弦定理的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中是奇函數(shù)的為( 。
A.y=2xB.y=-x2C.y=($\frac{1}{3}$)xD.y=log3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知線段AB的端點(diǎn)B的坐標(biāo)為(0,3),端點(diǎn)A在圓C:(x+1)2+y2=4上運(yùn)動(dòng).
(1)求線段AB的中點(diǎn)M的軌跡方程;
(2)過B點(diǎn)的直線l與圓C有兩個(gè)交點(diǎn)A,B,弦AB的長(zhǎng)為$\frac{{2\sqrt{19}}}{5}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.有5個(gè)男生和3個(gè)女生,從中選出5人擔(dān)任5門不同學(xué)科的科代表,求分別符合下列條件的選法數(shù):
(1)有女生但人數(shù)必須少于男生;
(2)某男生必須包括在內(nèi),但不擔(dān)任數(shù)學(xué)科代表;(用數(shù)字回答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線C:y2=mx(m>0)的焦點(diǎn)為F,點(diǎn)A(0,-$\sqrt{3}$),若射線FA與拋物線C相交于點(diǎn)M,與其準(zhǔn)線相交于點(diǎn)D,且|FM|:|MD|=1:2,則點(diǎn)M的縱坐標(biāo)為(  )
A.-$\frac{1}{3}$B.-$\frac{\sqrt{3}}{3}$C.-$\frac{2}{3}$D.-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≥-3}\\{2x+y≤3}\\{y≥1}\end{array}\right.$,則z=x+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,anan+1=2Sn-1,則a2017=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=$\left\{\begin{array}{l}{|x|,x≤1}\\{(x-2)^{2},x>1}\end{array}\right.$,如果方程f(x)=b有四個(gè)不同的實(shí)數(shù)解x1、x2、x3、x4,則x1+x2+x3+x4=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為70萬元,同時(shí)將受到環(huán)保部門的處罰,第一個(gè)月罰3萬元,以后每月增加2萬元.如果從今年一月起投資500萬元添加回收凈化設(shè)備(改造設(shè)備時(shí)間不計(jì)),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本.據(jù)測(cè)算,添加回收凈化設(shè)備并投產(chǎn)后的前5個(gè)月中的累計(jì)生產(chǎn)凈收入g(n)是生產(chǎn)時(shí)間n個(gè)月的二次函數(shù)g(n)=n2+kn(k是常數(shù)),且前3個(gè)月的累計(jì)生產(chǎn)凈收入可達(dá)309萬,從第6個(gè)月開始,每個(gè)月的生產(chǎn)凈收入都與第5個(gè)月相同.同時(shí),該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎(jiǎng)勵(lì)100萬元.
(1)求前8個(gè)月的累計(jì)生產(chǎn)凈收入g(8)的值;
(2)問經(jīng)過多少個(gè)月,投資開始見效,即投資改造后的純收入多于不改造時(shí)的純收入.

查看答案和解析>>

同步練習(xí)冊(cè)答案