17.設(shè)A={x|$\frac{1}{2}$<x<5,x∈Z},B={x|x≥a}.若A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A.a<$\frac{1}{2}$B.a≤$\frac{1}{2}$C.a≤1D.a<1

分析 A={x|$\frac{1}{2}$<x<5,x∈Z}={1,2,3,4},利用B={x|x≥a},A⊆B,求出實(shí)數(shù)a的取值范圍.

解答 解:A={x|$\frac{1}{2}$<x<5,x∈Z}={1,2,3,4},
∵B={x|x≥a},A⊆B,
∴a≤1,
故選C.

點(diǎn)評(píng) 本題考查集合的關(guān)系,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=lnx,g(x)=x-$\frac{1}{2}$x2
(Ⅰ)若點(diǎn)P是函數(shù)f(x)=lnx上任意一點(diǎn),求點(diǎn)P到直線y=x+1的最小距離;
(Ⅱ)當(dāng)x>e時(shí),求證函數(shù)f(x)=lnx的圖象位g(x)=x-$\frac{1}{2}$x2圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-5+\sqrt{2}cost}\\{y=3+\sqrt{2}sint}\end{array}\right.$(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線l的極坐標(biāo)方程為$\frac{\sqrt{2}}{2}$ρcos(θ+$\frac{π}{4}$)=-1.
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P是圓C上任一點(diǎn),求A,B兩點(diǎn)的極坐標(biāo)和△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.f(x)是定義在R上圖形關(guān)于y軸對(duì)稱,且在[0,+∞)上是減函數(shù),下列不等式一定成立的是( 。
A.f[${\frac{2}{{2-{a^2}}}}$]<f(${{a^2}-2a+\frac{5}{4}}$)B.f[-cos60°]<f(tan30°)
C.f[-(cos60°)2]≥f(${{a^2}-2a+\frac{5}{4}}$)D.f[-sin45°]>f(-3a+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x-alnx(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)當(dāng)a=1時(shí),設(shè)函數(shù)h(x)=f(x)+$\frac{1+a}{x}$,求函數(shù)h(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知Rt△ABC的頂點(diǎn)分別為A(1,2),B(-1,-2).,C(1,-2),圓E是△ABC的外接圓.
(I)求圓E的方程;
(II)求直線lmx-y-m+1=0被圓E截得的最短弦長(zhǎng)及對(duì)應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)的定義域?yàn)镽,則命題p:“函數(shù)f(x)為奇函數(shù)”是命題q:“?x0∈R,f(x0)=-f(-x0)”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.$\root{3}{-a}•\root{6}{a}$=( 。
A.$-\sqrt{a}$B.$-\sqrt{-a}$C.$\sqrt{-a}$D.$\sqrt{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2-4$\sqrt{2}ρcos({θ-\frac{π}{4}})+7=0$.
(Ⅰ)將極坐標(biāo)方程化為普通方程;
(Ⅱ)若點(diǎn)P(x,y)在圓C上,求x+$\sqrt{3}$y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案