11.在四棱錐P-ABCD中,底面ABCD為菱形,∠PAD=∠PAB,AC交BD于O,
( I)求證:平面PAC⊥平面PBD
( II)延長BC至G,使BC=CG,連結(jié)PG,DG.試在棱PA上確定一點E,使PG∥平面BDE,并求此時$\frac{AE}{EP}$的值.

分析 ( I)只需證明PO⊥BD,AC⊥BD,可得BD⊥平面PAC,即可證平面PAC⊥平面PBD.
( II)連接AG交BD于M,在△PAG中,過M作ME∥PG交PA于E,連接ED和EB,可得ADM∽△BGM,$\frac{AM}{GM}=\frac{AD}{BG}=\frac{1}{2}$,PG∥ME,得$\frac{EA}{EP}=\frac{MA}{MG}=\frac{1}{2}$,即 $\frac{AE}{EP}$=$\frac{1}{2}$.

解答 解:( I)∵∠PAD=∠PAB,AD=AB,∴△PAD≌△PAB,得PB=PD,
∵O為BD中點,∴PO⊥BD,(2分)
∵底面ABCD為菱形,∴AC⊥BD,
∵AC∩PO=O,∴BD⊥平面PAC,(4分)
∵BD?平面PBD,∴平面PAC⊥平面PBD(6分)
( II)連接AG交BD于M,在△PAG中,過M作ME∥PG交PA于E,連接ED和EB,
∵PG?平面BDE,ME?平面BDE,∴PG∥平面BDE(8分)
∵AD∥BG,BG=2AD,△ADM∽△BGM∴$\frac{AM}{GM}=\frac{AD}{BG}=\frac{1}{2}$,(10分)
∵PG∥ME,∴$\frac{EA}{EP}=\frac{MA}{MG}=\frac{1}{2}$,即 $\frac{AE}{EP}$=$\frac{1}{2}$(12分)

點評 本題考查了空間線面、面面位置關(guān)系,考查學(xué)生的空間想象能力、推理論證能力和運算求解能力.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這x個分店的年收入之和.
 x(個) 2 3 4 5 6
 y(百萬元) 2.5 3 4 4.5 6
(Ⅰ)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程y=$\widehatbx+a$;
(Ⅱ)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為z=y-0.05x2-1.4,請結(jié)合(Ⅰ)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
參考公式:$\widehat{y}$=$\widehat$x+a,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{\;}({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)點P(x,y)在不等式組$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面區(qū)域內(nèi),則$z=\frac{9xy}{{9{x^2}+{y^2}}}$的取值范圍為(  )
A.$[{\frac{18}{13},\frac{3}{2}}]$B.$[{\frac{45}{34},\frac{3}{2}}]$C.$[{\frac{45}{34},\frac{18}{13}}]$D.$[{\frac{18}{13},\frac{45}{34}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,則滿足z-i=|1+2i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點所在的象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)的定義域為D,若滿足條件:存在[a,b]⊆D,使f(x)在[a,b]上的值域為[$\frac{a}{2}$,$\frac{2}$],則稱f(x)為“倍縮函數(shù)”.若函數(shù)f(x)=lnx+t為“倍縮函數(shù)”,則實數(shù)t的取值范圍是(  )
A.(-∞,ln2-1)B.(-∞,ln2-1]C.(1-ln2,+∞)D.[1-ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知隨機變量X服從正態(tài)分布N(3,σ2),且P(X<5)=0.8,則P(1<X<3)=0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$\frac{1-i}{3+4i}$(其中i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點所在的象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A={x∈Z|y=log3(x+5)},B={x∈R|2x<$\frac{1}{2}}$},則A∩B={-4,-3,-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(t,-6),且$\overrightarrow{a}$,$\overrightarrow$共線,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為-5.

查看答案和解析>>

同步練習(xí)冊答案